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Abstract: In this study, the mean temperature of June to July was reconstructed for the period of 
1880 to 2014 by using the Larix gmelinii tree-ring width data for the Mangui region in the northern 
Daxing’an Mountains, China. The reconstruction accounts for 43.6% of the variance in the tempera-
ture observed from AD 1959–2014. During the last 134 years, there were 17 warm years and 17 cold 
years, which accounted for 12.7% of the total reconstruction years, respectively. Cold episodes oc-
curred throughout 1887–1898 (average value is 14.2°C), while warm episodes occurred during 1994–
2014 (15.9°C). Based on this regional study, the warmer events coincided with dry periods and the 
colder events were consistent with wet conditions. The spatial correlation analyses between the recon-
structed series and gridded temperature data revealed that the regional climatic variations were well 
captured by this study and the reconstruction represented a regional temperature signal for the north-
ern Daxing’an Mountains. In addition, Multi-taper method spectral analysis revealed the existence of 
significant periodicities in our reconstruction. Significant spectral peaks were found at 29.7, 10.9, 2.5, 
and 2.2 years. The significant spatial correlations between our temperature reconstruction and the El 
Niño–Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and Solar activity suggested 
that the temperature in the Daxing’an Mountains area indicated both local-regional climate signals 
and global-scale climate changes. 
 
Keywords: Larix gmelinii, Tree rings, temperature reconstruction, El Niño–Southern Oscillation, Pa-
cific Decadal Oscillation, Solar activity. 
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1. INTRODUCTION 

The rise in global temperatures since the 20th century 
has a significant impact on human activities (Esper et al., 
2002; Moberg et al., 2005; IPCC, 2014), resulting in 
temperature changes at both local-regional and global 
scales, with a strong influence on upland as well as hy-
drophytic ecosystems (Cao and Woodward, 1998; Shaver 
et al., 2000). Warming is expected to have significant 
effects on ecosystems at high latitudes, where plant 
growth is mainly limited by temperature (Kittel et al., 
2000). The Daxing’an Mountains (DM), which are rang-
ing in the northeast across 200–300 km from east to west 
and extend over 1220 km from south to north, are one of 
the most sensitive areas to temperature variation of China 
(Ding et al., 1994; Wang et al., 1998; Zhang et al., 2016). 
Previous studies showed that temperature change in this 
region was linked with solar activities and global land-sea 
atmospheric circulation. The temperature will rise or fall 
with the intensity or weakness of solar activity (e.g. the 
warm period in Middle Ages and the cold period in “Lit-
tle Ice Age”) (Lean and Rind, 1999; Bond et al., 2001; 
Herrera et al., 2015). 

In recent years, the temperature in northeast China has 
gradually increased, and the temperature in the growing 
season has risen significantly (Li and Gong, 2006). To 
understand the potential impacts of climate variation in 
this region, it is necessary to thoroughly understand the 
long-term changes and trends of climate over the last 
hundred years (Esper et al., 2002; Zhang et al., 2003). 
However, the historical and instrumental meteorological 
records are very limited before the 1950s. This poses the 
most significant impediment to comprehending the pro-
cesses and mechanisms of past climatic fluctuations in 
this region (Bao et al., 2012). Thus, understanding the 
characteristics of long-term paleoclimate records are of 
great research value for the Daxing’an Mountains, which 
is fundamental for the prediction of future climate. 

Over the past few years, the dendrochronological re-
search has made significant progress in China, such as 
dendroecological research by Song et al., 2011, Yu et al., 
2018; dendrogeomorphological research by Malik et al., 
2013, 2017. Besides, because the tree-rings are high-
resolution climate proxies containing rich climatic infor-
mation, from which long paleoclimatic records can de-
velop (Shao et al., 2010). This method has been used to 
extend limited meteorological data and predicts the im-
pacts of various factors over time in various locations 
around the world (Pederson et al., 2001; Mann et al., 
2009; Cook et al., 2010; Davi et al., 2010; Bao et al., 
2012; PAGES 2k Consortium, 2013; Pathi et al., 2017). 
In recent years, some climate reconstruction projects 
based on tree rings have also been carried out in the 
northern Greater Khingan Mountains (Liu et al., 2009; 
Zhang et al., 2011, 2013; Chen et al., 2012; Yu et al., 
2012). However, to date, temperature reconstruction 
based on tree-ring records were still insufficient in the 

northern Greater Khingan Mountains (Zhang et al., 
2013). Thus, this lack must be addressed. Mangui (the 
site codes MG) is situated in the northern Daxing’an 
Mountains. A large area of natural temperate old-growth 
forests in this location provides an excellent opportunity 
for the study of dendroclimatology, which will allow us 
to better understand the historical and current climate 
changes in the northern Daxing’an Mountains region. 

This paper uses tree-ring data for Larix gmelinii in 
Mangui to (1) reconstruct and investigate temperature 
variability since AD 1880 based on the tree-ring widths 
from MG, and (2) explore the potential linkages between 
the reconstructed June-July temperature data and large 
scale climatic change. 

2. MATERIALS AND METHODS 

Study area and sample collection 
Our study area is located in Mangui in the northern 

Daxing’an Mountains, Inner Mongolia Autonomous 
Region, China (Fig. 1). The region experiences a temper-
ate continental monsoon climate, which is characterized 
by a long and cold winter, windy and dry spring, short 
and rainy summer, and cool and frosty autumn (Wu et al., 
2004). The average annual temperature is −5.7°C, and the 
annual total precipitation varies from 320 mm to 690 mm, 
the growing season is from May to September. The slope 
of the sample site, MG (890 m a.s.l, 52°12’N and 

 
Fig. 1. Location of the sampling site (MG). Northern Greater Higgnan 
Mountains (HGHM) (Zhang et al., 2013), Inner Mongolia (IM) (Zhang et 
al., 2011) and Hulunbuir (HLBE) (Shi et al., 2015) were u asterisk sed 
for comparison. The cities TH(Tahe), NJ (Nenjiang), NH(Nehe), 
QQHE(Qiqihar), MX(Maoxing) and HEB (Haerbin) were marked with 
asterisk. 
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122°17’E), was from 5° to 10°, and the aspect was south. 
To minimize non-climatic influences on tree growth, the 
selected stands of Larix gmelinii were naturally estab-
lished, only healthy Larix gmelinii with no evidence of 
recent fire, or human disturbance were selected for sam-
pling at breast height. To collect samples that contained 
consistent climate signals, the elevations difference be-
tween the trees of the sample site was within 40 m. One 
or two tree-ring increment cores were extracted in North-
South directions from each tree (In general, two tree 
cores were taken in each tree, but in some cases, the col-
lected tree core was damaged and discarded, so only one 
tree core was utilized). In total, 42 cores from 26 Larix 
gmelinii trees were collected from MG in October 2014. 

Development of ring-width chronologies 
All cores were preprocessed, air-dried, mounted on 

the wooden holders using conventional dendrochronolog-
ical techniques, and subsequently were carefully polished 
with successively finer grit sandpaper in the laboratory 
(Fritts, 1976; Holmes, 1983; Cook, 1985). The tree rings 
were all visually cross-dated with a binocular micro-
scope, annual ring widths were subsequently carefully 
measured to the nearest 0.001 mm by using a Velmex 
measuring system. The quality control of cross-dating 
and measurements was checked by using the COFECHA 
programme (Holmes, 1983). Each individual ring-width 
series were detrended in order to remove age-related, 
non-climatic growth trends (Frits, 1976). A negative 
exponential curve or straight line was applied to preserve 
as much low-frequency signal as possible (Cook, 1990). 
In a few cases, a cubic spline with 67% of the series 
length was employed when anomalous low-frequency 
growth trends occurred. The detrended data from individ-
ual tree cores were combined into the site chronology by 
using a bi-weight robust mean method to minimize the 
influence of extreme values, outliers or bias in tree-ring 
indices (Cook, 1990). Three kinds of chronologies were 
generated from ARSTAN: residual (RES), autoregressive 
(ARS) and standard (STD). The STD chronology was 
used for further analyses because it includes both low- 
and high-frequency signals. We limited our analyses to 
the period with an EPS of at least 0.85 to determine the 
length of credible chronology (Cook and Briffa, 1990; 
Wigley et al., 1984). 

Climate data 
There is no weather station near the sample sites. As 

such, the interpolated values, based on records from ran-
domly selected 120 of 164 meteorological stations, were 
used for growth-climate response analysis. (120 weather 
stations in northeast China were from Chinese Meteoro-
logical Data Sharing Service System 
(http://cdc.cma.gov.cn), another 44 weather stations in 
Russia from Global Historical Climatology Network 
(https://www.ncdc.noaa.gov). Meteorological records 

from a large number of different stations, can reduce the 
random components or small-scale noise and enhance the 
reliability of statistical relationships between tree-ring 
widths and climate data (Pederson et al., 2001).  

This interpolation method begins by fitting a partial 
thin-plate smoothing spline model, that is based on relat-
ing location and elevation to ground-based observations 
to estimate a trend surface, and then a simple kriging 
procedure was employed to the residuals for trend surface 
correction (Huang et al., 2013; Li et al., 2014). Analysis 
of regression was conducted between measured and in-
terpolated precipitations and temperatures at the remain-
ing 44 weather stations, to assess the reliability of the 
interpolated values. There was a high correlation with  
R2 = 0.99.  

Correlation coefficients between tree-ring width indi-
ces and climatic variables from 1959 to 2014 were ana-
lyzed by using the data of monthly mean temperature and 
precipitation. Four climate variables were applied for the 
dendroclimatological analyses, including monthly total 
precipitation (Prec), monthly maximum temperature 
(Tmax), monthly mean temperature (Tmean) and monthly 
minimum temperature (Tmin). The climate data from the 
previous June to the current September was used for the 
correlation analysis. 

Global-scale climate variables such as El Niño-
Southern Oscillation index (ENSO) and the Pacific Deca-
dal Oscillation index (PDO) (http://climexp.knmi.nl) 
were also used to assess the tree-ring based climatic sig-
nals. 

Statistical analyses 
Pearson correlation function and growth-climate re-

sponse analyses (Blasing et al., 1984; Biondi and Waikul, 
2004) were utilized to identify the most accepted model 
for the climatic reconstruction. Subsequently, a simple 
linear regression equation between the tree-ring width 
and the climate variables was computed for the calibrated 
period of 1959–2014. The parameters for calibration and 
verification included the Pearson’s correlation coefficient 
(r), explained variance (r2), reduction of error (RE), coef-
ficient of efficiency (CE), sign test (ST) and product 
means test (PMT). All statistical analyses were performed 
by using commercial software, SPSS12.0 (SPSS, Inc., 
Chicago, IL, USA). 

Power spectral analysis was applied to identify rea-
sonable periodicities and performed over the full range of 
the reconstruction. The spectral properties of the recon-
struction series were assessed by using a multi-taper 
method. In addition, Spatial correlations between the 
reconstructed Tmean6-7 and the CRU TS 4.01 gridded Tmean 
dataset (45–52°N, 118–127°E) during the common period 
of 1960–2013 were analyzed by using the KNMI climate 
explorer (http://climexp.knmi.nl). This was done to eval-
uate the spatiotemporal representativeness of the recon-
struction.  

http://cdc.cma.gov.cn/
https://www.ncdc.noaa.gov/
http://climexp.knmi.nl/
http://climexp.knmi.nl/
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3. RESULTS 

Chronology Statistics 
The chronology statistics are shown in Table 1. The 

mean ring width ranged between 0.75 and 1.56 mm. 
Mean sensitivity (MS), which indicates the relative dif-
ference between adjacent rings, was 0.24, reflecting that 
tree growth was sensitive to the changes of the local envi-
ronment. The standard deviation (SD) value was 0.26. 
The first-order autocorrelation among the tree-ring series 
was 0.60, indicating that tree growth in the current year 
had a strong influence on growth in the next year (Fritts, 
1976). The value of inter-series correlation was 0.60, with 
a signal-to-noise ratio of 27.60, suggesting that the chro-
nologies recorded adequate environmental signals. The 
variance in the first eigenvector accounted for 42.0% in 
the standard chronology. An expressed population signal 
(EPS) threshold value of 0.85 was used to assess the most 
credible period of the chronology to ensure the reliability 
and validity of the reconstruction. The threshold corre-
sponded to a sample depth of three trees and allowed for 
the reconstruction of the period of 1880–2014. 

The relationship between climate and tree-ring width 
The results of correlation between the MG chronology 

(STD) and the climatic data revealed that tree-ring width 
indices were negatively correlated to monthly mean tem-
peratures in almost all months (Fig. 2); the correlations 
were significant in July of the prior year as well as March 
and from June to July of the current year (P < 0.05), with 
the highest correlation coefficient in July of the current 
year (r = –0.46, P < 0.05) (Fig. 2). Meanwhile, Fig. 2 
show there were significant positive correlations between 
tree-ring index and the June Tmin of the previous year. In 
addition, Larix gmelinii radial growth in Mangui was 
positively correlated with precipitation during current 
June to July, with significant correlation observed in July 
(Fig. 2). After examining different combinations of 

months, the best correlation was confirmed between the 
ring-width indices and monthly mean temperature from 
current year June to July. Therefore, we reconstructed 
monthly mean temperature from June to July of the cur-
rent year by using the MG chronology.  

Development of the regression model 
Based on the results of correlation analysis, a linear 

regression model was used in our study to describe the 
connection between the tree-ring width and the June-July 
temperatures. The model was designed as follows: 

Tmean6–7 = 19.14 – 4.03 × Xt (3.1) 

(N=55, R2=0.436, R2adj= 0.426, F= 35.29, p < 0.0001) 

where Tmean6–7 is the mean temperature from June to July 
of the current year and Xt is the ring-width index of the 
MG chronology at the t year.  

For the calibration period (1959–2014), the recon-
struction accounted for 43.6% of the actual Tmean6–7 (Fig. 
3), after adjusting for the loss of degrees of freedom, it 
still explained 42.6% of the total temperature variance. 
The method of split-sample was employed to check the 
stability and reliability of the regression model (1) (Liu et 
al., 2009). Statistics of calibration and verification were 
shown in Table 3. All calibration and verification param-
eters were statistically significant (p < 0.05), which indi-
cated that the reconstructed equation was acceptable 
(Fritts, 1976). In addition, the positive CE and RE values 
(Table 2) revealed that model (1) was stable and suitable 
for further temperature reconstruction (Cook et al., 1999). 
Significant results of PMT and ST showed a good agree-
ment between the reconstructed and actual data. These 
analyses suggested that the regression model was valid 
for temperature reconstruction. 

Table 1. Statistical features of STD chronology. 

Statistic STD 
Mean sensitivity 0.23 
Standard deviation 0.26 
First order autocorrelation 0.60 
Mean correlation within trees 0.60 
Variance in first eigenvector (%) 42.0 
Signal-to-noise ratio (SNR) 27.6 
Mean ring width (mm) 1.16  
Expressed population signal (EPS) 0.91 
First year where SSS>0.85 (number of trees) 1880 (3) 
 

 

 
Fig. 2. Correlation coefficients between the monthly climate variables 
and tree-ring indices for 1959–2014. 
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Temperature variations from AD 1880 to 2014 
Based on model (1), the mean temperature that was 

reconstructed from 1880 to 2014 for the MG region ex-
hibited a mean of 15.1°C and a standard deviation of  
σ = 0.88°C. We defined years with values > mean+1σ as 
a warm year, and values < mean–1σ as a cold year. Dur-
ing the last 134 years, there were 17 warm years, 17 cold 
years, which accounted for 12.7% of the total reconstruc-
tion years, respectively (Table 3). The decadal variability 
was highlighted by using an 11-year moving average to 
the reconstruction (Fig. 4B). The warm periods and cold 
periods can be distinguished. Cold periods occurred in 
1887–1898 (average value is 14.2°C), while warm peri-
ods occurred in 1994–2014 (15.9°C) (Fig. 4B). Further-
more, there are two obvious processes of mean tempera-
ture increasing in 1888–1910 (from 14.1 to 15.5°C, and 
lasting for 23 years), 1987–2012 (from 15.1 to 16.2°C, 
and lasting for 26 years). 

4. DISCUSSION 

Tree growth-climate responses 
In this study, summer (June to July) temperatures 

were the most significant negative correlations with the 

annual radial growth of Larix gmelinii at MG region (Fig. 
2). Similar results were also obtained by studies of other 
tree species in various areas of China (Bao et al., 2012; 
Gao et al., 2013; Lu et al., 2016; Shi et al., 2013; Tian et 
al., 2009). The hot summer temperatures might limit the 
growth of Larix gmelinii due to the increased water defi-
cits caused by the enhanced forest respiration and evapo-
ration of soil moisture (Huang et al., 2010; Zhang et al., 
2010). According to the climatic data of the study area 
from 1959 to 2014, the mean temperature from June to 

 
Fig. 3. Scatter plot of the tree-ring width index and the averaged 
Tmean6–7 from June to July (1959–2014). 

 

Table 2. Statistics of calibration and verification test for the common period of 1959–2014. 

Calibration R R2 Verification R Reduction 
of error 

Coefficient of  
efficiency Sign test Product  

means test 
Whole section 1959-2014 0.66 a 0.436 a       
Front section 1959-1983 0.53 a 0.28 a Back section 1984–2014 0.71a 0.61a 0.35a (26+ /5-) a 2.8a 
Back section 1984-2014 0.71 a 0.50 a Front section 1959–1984 0.53a 0.61a 0.43a (21+ / 5-) a 3.3a 
 

a Significant at the 0.05 level 

Table 3. Rank of years of warm/cold reconstructed mean temperature 
from June to July (Tmean6–7). 

Rank Warm year 
Tmax6-7 

RECHT89 
(°C) 

Cold year Tmax6-7 

1 2008 17.28 1888 12.66 
2 2003 16.85 1893 13.21 
3 2012 16.67 1902 13.22 
4 1994 16.65 1932 13.33 
5 2014 16.59 1898 13.42 
6 1954 16.46 1880 13.60 
7 2011 16.43 1991 13.62 
8 2004 16.38 1934 13.72 
9 1886 16.36 1882 13.73 
10 1885 16.28 1892 13.81 
11 1975 16.26 1978 13.91 
12 1967 16.15 1891 13.94 
13 1919 16.14 1895 14.04 
14 1883 16.13 1958 14.05 
15 2001 16.11 1890 14.05 
16 2005 16.09 1927 14.10 
17 1939 16.07 1900 14.15 
 

 

 
Fig. 4. (A) Comparison of actual and reconstructed Tmean6–7 from 1959 
to 2014 and (B) the reconstructed June-July temperature series since 
1880. The smoothed line indicates the 11-year moving average, and 
red dots represent drought events, blue dots represent flood events. 
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July was significantly negatively correlated with the 
average precipitation (r = –0.68, P < 0.001), indicating 
that the effect of precipitation on the growth of Larix 
gmelinii trees in the high-temperature season was signifi-
cant. In this study area, soil water is mainly used by trees 
during the period from June to August, especially in July 
when the temperature is highest in a year (Bai et al., 
2011). The highest precipitation occurs in July-August, 
but the maximum temperature occurs from June-July 
(Fig. 5). During this period, the increase in water demand 
due to transpiration may result in a deficit of soil mois-
ture. Soil moisture evaporation was greater than precipi-
tation, and therefore moisture requirements for growth 
cannot be met. Our results also revealed that the influence 
of mean temperatures was more significant than the in-
fluence of precipitation during the current June–July. In 
addition, low temperatures in previous and current June 
had a great limitation on tree-ring formation. The higher 
the Tmin in June, the earlier the growth begins, and the 
longer the growing season, resulting in a wider annual 
ring (Wu and Shao, 1996). The radial growth of tree rings 

is affected by the amount of stored compounds. The 
higher Tmin in June of the previous year may enhance 
photosynthetic production and store more carbohydrates 
for the next summer (DeLucia and Smith, 1987). Our 
results are in line with those of Wang et al., 2005, who 
suggested that the annual growth of Larix gmelinii trees 
in Mohe was positively correlated with the Tmin in June, 
indicating that trees respond to climate with regional 
homogeneity. 

Regional- to large-scale comparison 
Drought is not only due to lower precipitation but also 

to higher temperatures. Under normal rainfall conditions, 
high temperatures can cause severe droughts, and precipi-
tation is accompanied by low temperatures (Yi et al., 
2012; Bao et al., 2012). Historical literature evidence 
shows that many drought and flooding events occurred in 
Heilongjiang Province after AD 1880 (Wen and Sun, 
2007). The high-temperature years that occurred in AD 
1883, 1885, 1886, 1919, 1939, and 1954 were linked with 
drought events (Table 4) and low-temperature years of 
1888, 1892, 1895, 1932 and 1934 were associated with 
the wet events in the study region (Table 4).  

To further evaluate the reliability of this reconstruc-
tion, we compared the reconstructed series with nearby 
tree-ring-based reconstruction temperature series by 
Zhang et al., 2013 (the site codes NGHM, 680 m a. s. l., 
52°55’ N, 121°06’ E; 193 km from our sampling point), 
Zhang et al., (2011) (the site codes IM,  
51°03’15”–52°08’08” N, 120°00’20” – 121°19’21” E; 
120 km from our sampling point) and reconstruction 
Palmer drought severity index (PDSI) series by Shi et al., 
2015 (the site codes HLBE, 515–669 m a. s. l., 49°12’ N, 
119°42’ E; 607 km from our sampling point) (Fig. 1, Fig. 
6). A significant negative correlation (r = –0.43,  
p < 0.001) between our reconstruction and the May–July 
PDSI reconstruction in HLBE (Fig. 6d) was found, while 
our reconstruction of Tmean6–7 had similar variations in the 
May–October temperature reconstruction in NGHM 
(r=0.35, p<0.01; Fig. 6c) and May-September tempera-

 
Fig. 5. Mean monthly temperature (in °C) and total precipitation  
(in mm) at Mangui (MG) in the northern Daxing’an Mountains  
(AD 1959–2014) based on interpolated values from 164 climate stations. 

 

Table 4. The dry/wet years of the reconstructed temperature for the Mangui (MG) region in comparison with historical documents (Wen and Sun, 2007). 

Dry and  
wet years Short description of weather or related events 

1883 Heilongjiang: Severe drought occurred in 27 regions in summer, such as Qiqihar, Haerbin, Moergen (now Nenjiang), Maoxing, Ningguta, etc. 
1885 Heilongjiang: Drought occurred in summer, such as Heilongjiang city, Moergen (now Nenjiang), Qiqihar, Sanxing (now Yilan), Ningguta, etc. 
1886 Heilongjiang: Drought occurred in summer, such as Heilongjiang City, Qiqihar, Moergen (now Nenjiang), Maoxing, Ningguta, etc. 
1919 Heilongjiang: Drought occurred in summer, such as Haerbin, Tonghe, Qiqihar, Xibuteha (now Zhalantun), Nehe, Anda, Zhaozhou, etc. 
1939 Heilongjiang: Severe drought occurred in Jiamusi in summer. 
1954 Heilongjiang: Drought occurred in summer, such as, Nenjiang, Shangzhi, Tieli, Suiling, Hailun, Nenjiang, etc. 
1888 Heilongjiang: Flooding disaster occurred in 27 regions in summer, such as Qiqihar, Moergen (now Nenjiang), Maoxing, etc. 
1892 Heilongjiang: Flooding disaster occurred in 20 regions in summer, such as Qiqihar, Maoxing, Wuchang, etc. 
1895 Heilongjiang: Flooding disaster occurred in summer, such as Heilongjiang City, Hulan, Boduna, Haerbin, etc. 
1932 Heilongjiang: Severe flooding disaster occurred in summer, such as Zhanlantun, Qiqihar, Haerbin, Tahe, Zhaodong, Dongning, etc. 
1934 Heilongjiang: Flooding disaster occurred in summer, such as Anda, Qiqihar, Haerbin, Nenjiang, Hulan, etc. 
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ture reconstruction in IM (r = 0.31, p < 0.01; Fig. 6b). 
The results showed that despite some differences in these 
reconstructions, similar temperature patterns were found 
during 1880–1885, 1888–1906, 1925–1933, 1943–1947, 
1953–1964 and 1980–2008 in these areas, (Fig. 6), indi-
cating regional climate change.  

The results showed that the large-scale regional tem-
perature variations had been well captured by our recon-
struction, which was significantly positively correlated 
with regional gridded temperatures (Fig. 7). The above 
results showed that our reconstruction could capture the 
temperature signals well. Thus, the reconstruction pre-
served valid information about regional climate change 
and provided a valuable profile of past climatic variation 
in this region. 

Possible forcing mechanism 
The multi-taper method (MTM) of spectral analysis 

(Wei, 2010) revealed that the reconstructed Tmean6-7 exhib-
ited significant cycles, which indicated that the Tmean6-7 in 
MG region could be affected by other factors. Significant 
peaks of 2.5, and 2.2 years were observed (Fig. 8). The 
2–7 years peak cycle was found in some temperature-
related reconstruction by tree-rings in the northeast of 
China (Bao et al., 2012; Liu et al., 2013), which were 
within the range of the ENSO cycle (Allan et al., 1996; 
Su and Wang, 2007; Hocke, 2009; Gergis and Fowler, 
2009). A possible connection between Tmean6-7 variability 
and the ENSO was supported by the significantly positive 
correlations between the reconstructed Tmean6-7 and sea 
surface temperatures (SSTs) in the eastern equatorial 
Pacific Ocean (Fig. 9). Some studies have suggested that 
ENSO had a strong influence on the strength of East 
Asian Summer Monsoon (EAWM) (Zhang et al., 1999; 
Wu and Wang, 2002; Lu, 2005). Mangui is located at the 
boundary zone of the East Asia Summer Monsoon 
(EASM) (Yang, et al., 1992; Li and Zeng, 2003). The 
East Asia Summer Monsoon climate regimes dominate 
the fecundity or deficit of water availability, and trends in 
temperature (Zhu et al., 2009; Li et al., 2009; Chen et al., 
2011, 2012; Gao et al., 2013), the annual warm summers 
are related to weaker summer East Asia monsoon climate 
(Zhu et al., 2009; Li et al., 2009). In other words, the 
stronger the monsoon is, the lower the summer tempera-
ture is, and vice versa. The cycles of 10.9-years may 
suggest the impact of solar effects, such as sunspot activi-
ty (Stuiver and Braziunas, 1993; Grootes and Stuiver, 
1997; Yi et al., 2012), which was supported by the signif-
icant positive correlations of the reconstructed Tmean6–7 
with the number of sunspots 
(http://www.sidc.be/silso/datafiles) from June to July of 
the current year, with a correlation coefficient of 0.215  
(N = 135, 1880–2014, p = 0.009). 

 
Fig. 6. Comparison of June–July mean temperature reconstruction in 
MG with other tree-ring proxies from surrounding areas: (a) June–July 
maximum temperature reconstruction in this study; (b) May–
September temperature reconstruction in Inner Mongolia (Zhang et al., 
2011); (c) May–October temperature reconstruction in northern Great-
er Higgnan Mountains, China (Zhang et al., 2013); (d) Annual PDSI 
reconstruction from tree-ring of Mongolian pine in Hulunbuir, Northeast  
China (Shi et al., 2015). The gray areas mean the common warm/cold 
periods. 

 

 
Fig. 8. The power spectrum analyses of reconstructed June–July 
mean temperature. 

 

 
Fig. 7. Spatial correlation of (A) instrumental and (B) reconstructed 
June–July temperatures with regional gridded June–July temperatures 
during the period 1959–2014. The asterisk mark in is the sampling 
position. 
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The significant spectral peaks at 29.7-yr (Fig. 8) was 
possibly linked with the 15–30 yr periods of the Pacific 
Decadal Oscillation (PDO) (Minobe, 1999; Gedalof et 
al., 2002; Ma, 2007), which was supported by the signifi-
cant positive correlations of the reconstructed Tmean6-7 
with SSTs in the western Pacific Ocean (Fig. 9) and with 
the annual PDO (MacDonald and Case 2005), with R2 = 
0.156 (N = 117, p < 0.05; 1880–1996). Some other tree-
ring studies closed to our study region, discovered that 
the Hailar pine, Larix gmelinii and tree-ring widths are 
also significantly correlated with the PDO (Chen et al., 
2011, 2012; Bao et al., 2015).  

As mentioned above, the complex connections with 
the ENSO, PDO and Solar activity suggested that the 
temperature in the Mangui area indicated both local-
regional climate signals and global-scale climate changes. 

CONCLUSION 

The mean temperature from June to July was recon-
structed for the period of 1880 to 2014 by using tree-ring 
data from MG in the northern Daxing’an Mountains, 
China. The reconstructed temperature series provided 
essential information concerning temperature variations 
in this region. During the last 134 years, there were 17 
warm years, 17 cold years, which accounted for 12.7% of 
the total reconstruction years, respectively. Cold episodes 
occurred in the intervals 1887–1898, while warm epi-
sodes occurred in 1994–2014. In and near the study re-
gion, the warmer events coincided with dry periods and 
the colder events consistent with wet conditions. The 
spatial correlation analyses between the reconstruction 
series and gridded temperature data revealed that the 
regional climatic variations were well captured by this 
study and the reconstruction represented a regional tem-
perature signal for the northern Daxing’an Mountains. In 
addition, multi-taper method spectral analysis revealed 

the existence of significant periodicities in our recon-
struction. Significant spectral peaks were found at 29.7, 
10.9, 2.5, and 2.2 years. The significant spatial correla-
tions between our temperature reconstruction and the El 
Niño–Southern Oscillation (ENSO), and Pacific Decadal 
Oscillation (PDO) and Solar activity suggested that tem-
perature variability in the Mangui area was probably 
driven by extensive large-scale atmospheric-oceanic 
variability and solar activity. 
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