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1. Introduction

Loess can be simply defined lithogenetically as a terrestrial 
silt deposit of aeolian provenance (Pye, 1987, 1995; Follmer, 
1996; Smalley et al., 2001; Smalley and Jary, 2004). Loess-
paleosol sequences (LPS) are an exceptional source of 
 palaeoclimate data, providing an indirect record of changing 
environmental and climatic conditions that existed during 

loess deposition and early diagenesis (Muhs, 2007, 2013; 
Rousseau et al., 2013; Schaetzl et al., 2018). This is due to 
the lithological and structural characteristics of LPS.

The Northern European Loess Belt (NELB) extends 
from southern Great Britain to northern France, Belgium, 
Netherlands, Germany, Ukraine and Russia (Różycki, 1991; 
Pécsi and Richter, 1996; Smalley and Jary, 2005; Haase  
et al., 2007), includes loess in Poland. In the foreground of 
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Abstract
Loess-paleosol sequences (LPS) are an exceptional source of palaeoclimate data constituting an indirect record of 
changing environmental and climatic conditions that prevailed during loess deposition and early diagenesis. The 
Zaprężyn LPS (17°11ʹ52ʺE, 51°14ʹ44ʺN) is situated in the southern morphological edge of the Trzebnica Hills. This 
sequence provides an opportunity to reconstruct past climate conditions in this part of SW Poland. In this work, 
we used two sets of optically stimulated luminescence (OSL) dating from the Gliwice and Bayreuth laboratory to 
establish a chronological framework for this profile. The results of 14C accelerator mass spectrometry (AMS) dating 
were also used. The dating results are accompanied by detailed analyses of grain-size distribution and colour. The 
applied methodology allowed us to distinguish four litho-pedotratigraphic units: modern soil S0, L1LL1 loess unit, 
L1LL2 loess unit and fossil S1 soil. The OSL dating results indicate an unconformity representing a time interval >30 
ka between the L1LL1 and L1LL2 units. This unconformity explains the lack of a L1SS1 soil unit. In Zaprężyn LPS, the 
presence of the ice wedge pseudomorph in L1LL2 loess unit was recorded. Ice wedge pseudomorph approves the 
presens the permafrost conditions during the Lower Plenivistulian in Trzebnica Hills.
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the massive Pleistocene Fennoscandian ice sheets, the NELB 
was formed (Lehmkuhl et al., 2021). The dynamic changes 
in Pleistocene periglacial settings significantly impacted 
the formation of the Late Pleistocene LPS in Poland, which 
developed over relatively brief but locally intense sedimenta-
tion periods (Jary and Ciszek, 2013).

Maruszczak (1991) developed the first complex loess 
stratigraphic scheme in Poland using the findings from ther-
moluminescence (TL) dating. Recent optically stimulated 
luminescence (OSL) and radiocarbon dating conducted in 
Gliwice have been used to verify the Late Pleistocene part 
of this scheme (Moska et al., 2011, 2012, 2015, 2017, 2018, 
2019a, 2019b). The study’s findings made it possible to cor-
relate Poland’s Late Pleistocene LPS with the unified loess 
stratigraphic scheme as suggested by Marković et al., (2015).

According to Jary et al., (2002), loess in SW Poland 
creates a discontinuous cover having a range of thickness 
with stratigraphic and physical characteristics (Fig. 1A). 
The Niemcza-Strzelin Hills are a site to the most represen-
tative LPSs, which span the most recent interglacial-glacial 
cycle. The greatest example is the Biały Kościół LPS (Jary, 
2007, 2010; Moska et al., 2011, 2012, 2019a; Jary et al., 
2016; Zöller et al., 2022). It has well-developed S1, L1LL2, 
L1SS1, L1LL1 and S0 litho-pedostratigraphic units and reli-
able chronology.

The northernmost loess region in SW Poland is located in 
Trzebnica Hills, and it is just around 70 km from the front of 
the ice sheet during the Last Glacial Maximum (Marks, 2012). 
Late Pleistocene loess of this region has been recognised 

in the Trzebnica, Skarszyn and Zaprężyn sites (Jary, 1991, 
1996, 2007). Zöller et al. (2022) recently reviewed the most 
recent LPS (Zaprężyn). They released a set of OSL quartz 
dates which were obviously distinct from the 14C accelerator 
mass spectrometry (AMS) ages that Jary (2007) had previ-
ously reported.

This study aims to verify the chronostratigraphy of the 
Zaprężyn LPS based on the new results of OSL and 14C AMS 
dating. Litho-pedostratigraphical description and interpreta-
tion will be presented with a special reference to the peri-
glacial record. Next, we will compare the studied sequence 
with the Biały Kościół LPS, point out the similarities and 
differences between corresponding stratigraphical units, and 
propose some palaeoenvironmental implications.

2. Regional Setting

The Zaprężyn LPS (λ = 17°11′52″E, φ = 51°14′44″N, 165 
m.a.s.l.; Fig. 1) is situated in an inactive sandpit within the 
southern morphological edge of the Trzebnica Hills – the north-
ern part of the Silesian Lowlands (Solon et al., 2018). The area 
is cut by small denudation valleys of the general N-S course. 
Loess cover (5–6 m thick) rests on fluvioglacial sands of the 
Warta (Warthe) stadial correlated with the final part of the ma-
rine isotope stage (MIS) 6 (Krzyszkowski, 2002; Marks, 2011).

Orth (1872) first described the properties of the sur-
face sediments in this region and related their formation to 
chemical and aeolian processes. The distribution of loess and 

Fig 1.  (A) – Loess distribution in SW Poland (modified after Jary, 2010); (B) – location of the Zaprężyn LPS. 
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loess-like loam in the Trzebnica Hills was then reported by 
German authors (Tietze, 1910; Czajka, 1931; Meister, 1935; 
Schwarzbach, 1942), who assumed that the loess and loess-
like loam were formed by aeolian processes during the last 
glacial period. Rokicki (1952a,b) later studied loess in the 
Trzebnica Hills and provided the distinction between true 
loess and loess-like deposits there.

The first descriptions of the Zaprężyn LPS were made by 
Śnieszko (1995) and Szponar (1998). Śnieszko (1995) sepa-
rated the 4–5 m thick loess cover into an upper part that is 
rich in calcium carbonates and a lower part that has gley hori-
zons. At the bottom of the section was fossil soil with A-E-Bt 
horizons. Using the Jersak scheme, Śnieszko (1995) related 
this forest fossil soil with the soil complex of nietulisko type 
(Eemian) (1973a,b). Szponar (1998) dated the humic sub-
stances taken from the fossil forest soil accumulation hori-
zon (29.6 ± 0.76 ka BP, Gd-9209) and proposed that this is 
tundra-gley soil formed during the Denekamp interstadial. 
Other researchers have never agreed with this genetic and 
stratigraphic interpretation (Maruszczak, 2001; Jary, 2007).

Characteristics of lithostratigraphic units and interpreta-
tion of periglacial phenomena were presented by Jary (2007, 
2009, 2010), Jary and Ciszek (2013), Jary et al. (2016) and 
Krawczyk et al. (2017). New results from the 14C AMS dating 
of the Zaprężyn LPS were published by Jary (2007) (Fig. 2). 
Charcoals taken from the humic horizon of the fossil forest 

soil (ZAP18) have been dated as >50 ka BP (Poz-6939), 
humic substances from older tundra-gley soil (ZAP15) has 
an age of 31,299–29,095 cal BP (Poz-7649) and the age of 
humic substances from younger tundra-gley soil (ZAP12) is 
in range of 22,964–22,418 cal BP (Poz-7998). Based on the 
lithological data and three 14C AMS ages, Jary et al. (2016) 
designated five lithopedostratigraphic units in Zaprężyn LPS: 
two loess units (L1LL1 and L1LL2) and three soil units (S0, 
S1 and L1SS1). The presence of an ice wedge and its decay 
have been correlated with Upper Plenivistulian (MIS 2).

For the younger part of the section, the issue of chro-
nostratigraphic interpretation of the Zaprężyn LPS emerges. 
The 14C AMS ages are in conflict with the latest OSL 
results from the Bayreuth laboratory (Zöller et al., 2022). 
The ice wedge is thought to have developed in the Lower 
Plenivistulian (MIS 4) and melted at the beginning of the 
Middle Plenivistulian (MIS 3) according to the OSL ages 
from Bayreuth. In addition, Zöller et al. (2022) demonstrated 
the existence of an unconformity that most likely developed 
around 18 ka ago.

3. Methods

The field investigation included descriptions, rigorous clean-
ing of the profile and sampling for analysis. The profile was 

Fig 2.   Pedosedimentary sequence and description of the basic units in Zaprężyn LPS. Radiocarbon dating after Jary (2007). Stratigraphic interpretations 
after Jary et al. (2016) using labelling system after Marković et al. (2015).
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thoroughly cleaned to expose fresh material prior to descrip-
tion and sampling. The lithological description was then cre-
ated (see Figs. 2 and 3). Antoine et al. (2009) presented con-
tinuous column sampling (CCS) used to collect samples for 
lithological investigations at 1 cm intervals. This technique 
relies on the careful cutting of continuous material to create 
a complete record of lithological variability and to eliminate 
gaps in the record.

3.1. Lithological Analysis
Grain size distributions were determined by using a  laser 
diffractometer Mastersizer 2000 in Soil Laboratory of 
Department of Physical Geography, University of Wrocław. 
H2O2 and 10% HCl were used to eliminate organic matter and 
carbonates before starting the measurement. Prior to mea-
surement, sodium hexametaphosphate (Calgon) was added 
to the solution to facilitate greater dispersion.

Two granulometric indicators were employed here. As a 
metric for wind dynamics and atmospheric dust, the grain-
size index (GSI) was derived using the formula GSI = (26–52 
µm)/26 µm (Rousseau et al., 2007; Antoine et al., 2009). 
According to Vandenberghe and Nugteren (2001), the U-ratio 
index was derived as U-ratio = (16–44 µm)/(5.5–16 µm) to 
detect changes from low to high wind dynamics. The statisti-
cal parameters mean (Mz) and median (Md) were calculated 
too (Folk and Ward, 1957).

The Konica Minolta CM 600d spectrophotometer was 
used to determine the colour of the deposit. In this work, 
CIELab, the component units of the colour space are L* 
(luminance, or brightness [0–100]), a* (>0: red, 0< green) and 

b* (>0: yellow, 0< blue). The radiation reflected in this way 
is intercepted by a system with 36 detectors. The preparation 
process is the same as that provided by Gocke et al. (2014). 
The unique colour components L*, a* and b* are shown against 
RGB background colours (Sprafke, 2016). The fine-tuning 
of each RGB variable around its mean value, proportional 
to the distance between the maximum and minimum values 
from the profile mean, was carried out in two steps (RGB 
real, RGB k1) to facilitate the formation of the profile com-
prehensively. According to the method described by Sprafke 
et al. (2020), maximum tuning (RGB max) is accomplished 
by transforming RGB variables near their mean values to the 
entire range of this colour space (0–255).

3.2. Luminescence Dating
Luminescence dating samples were extracted from distinct 
sections of the site, and carefully chosen for their representa-
tive characteristics. These samples were collected through a 
meticulous process that involved the use of clean vertical out-
crops and thin-walled steel pipes. The Gliwice luminescence 
dating laboratory conducted the measurements as explained 
in the work by Moska et al. (2021).

Furthermore, advanced gamma spectrometry employing 
an HPGe detector from Canberra was employed to determine 
the dose rate. This method allowed the quantification of the 
uranium (U), thorium (Th) and potassium (K)  content within 
the samples. The laboratory protocol outlined in Moska et 
al.‘s study (2021) guided this process. The dose rates were 
then computed utilising an online calculator for dose rates 
that integrates the latest conversion factors, as established 

Fig 3.  LPS from Zaprężyn: (A) – Whole Zaprężyn profile; (B) – modern soil; (C) – top of L1LL1 loess unit; (D) – unconformity; (E) – L1LL2 loess with 
 deformed gley horizons; (F) – S1 soil and the bottom part of L1LL2 loess unit in Zaprężyn LPS. 
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by Tudyka et al. (2023). The assumed average water content 
stood at (15 ± 5)%, with all pertinent data for dose rate calcu-
lations comprehensively listed in Table 1.

For the measurement of OSL, quartz grains within the 
range of 45–63 µm were separated from sediment samples 
using standard treatments involving 20% hydrochloric acid 
(HCl) and 20% hydrogen peroxide (H2O2), as described in 
Aitken’s work (1998). A density separation procedure, aided 
by sodium polytungstate solutions, was applied to isolate 
grains with densities ranging from 2.62 g/cm3 to 2.75 g/cm3. 
After sieving, the quartz grains underwent  etching with con-
centrated hydrofluoric acid (HF).

Automated measurements for OSL were conducted using 
a Risø TL/OSL DA-20 reader equipped with a  calibrated 
90Sr/90Y beta source. This source delivered approximately 
6.0 Gy/min to grains at the sample  position. During OSL 
measurements, a 6 mm Hoya U-340 filter was utilised. The 
determination of equivalent doses was  executed through the 
single-aliquot regenerative-dose (SAR) protocol, following 
the approach established by Murray and Wintle (2000).

Final equivalent dose (De) values were derived for all 
samples using either the central age model (CAM) or the min-
imum age model (MAM), employing the ‘Luminescence’ R 
package developed by Kreutzer et al. in 2020. The dose distri-
butions obtained were graphically represented in Fig. 4, illus-
trating relative probability density functions in accordance 

with Berger’s framework (2010). Notably, all samples exhib-
ited an overdispersion parameter significantly below 20%, 
and the distributions appeared unimodal. As a result, it was 
reasonable to infer that the tested material represented a col-
lection of well-bleached quartz, as indicated in Moska et al.‘s 
work (2019a,b). Consequently, the CAM was deemed appro-
priate for the final calculations of equivalent doses.

3.3. Radiocarbon Dating Procedure
Radiocarbon dates were obtained for gley horizons occurring 
in the lower part of the section. Since there were no char-
coals, roughly 1 kg of material from each sample was used 
to extract the humic acid component in the lab. Since humic 
acids are not the ideal substance for 14C  dating, it is essential 
to verify dates. The standard chemical  pre-treatment based 
on the acid-alkali-acid (AAA) procedure was employed for 
radiocarbon dating. The samples are first washed in hot HCl, 
then they are washed in sodium hydroxide (NaOH), as part 
of the AAA pre-treatment. For the AMS technique, graphite 
targets were created. These procedures were carried out in the 
Gliwice 14C laboratory while the graphite targets were sent to 
an outside lab for analysis of the radiocarbon content. The 14C 
ages for all samples were calibrated with the OxCal program 
version 4.4 (Bronk Ramsey, 2009) and the calibration curve 
IntCal20 (Reimer et al. 2020) and the results are shown in 
Table 2.

Table 1. Basic information about investigated samples.

Lab. code Sample ID Samplin depth (cm) Dose rate (Gy/ka) Equivalent dose (Gy) Overdispersion (%) OSL age (ka)

GdTL-3709 ZAPR_1 690 1.24 ± 0.05 175 ± 4 5 141.5 ± 7.0

GdTL-3710 ZAPR_2 645 1.73 ± 0.06 182 ± 4 5 105.1 ± 4.3

GdTL-3711 ZAPR_3 615 2.27 ± 0.08 170 ± 4 5 75.0 ± 3.1

GdTL-3712 ZAPR_4 590 3.03 ± 0.11 190 ± 4 5 62.6 ± 2.8

GdTL-3713 ZAPR_5 550 2.99 ± 0.10 176 ± 4 5 59.0 ± 2.8

GdTL-3714 ZAPR_6 505 3.00 ± 0.10 177 ± 5 5 59.0 ± 2.8

GdTL-3715 ZAPR_7 490 3.06 ± 0.10 164 ± 4 5 53.8 ± 2.5

GdTL-3716 ZAPR_8 480 3.14 ± 0.10 172 ± 5 7 54.8 ± 2.8

GdTL-3717 ZAPR_9 450 2.87 ± 0.11 161 ± 4 5 56.0 ± 2.8

GdTL-3718 ZAPR_10 410 3.01 ± 011 163 ± 4 5 54.0 ± 2.5

GdTL-3719 ZAPR_11 370 3.09 ± 0.11 163 ± 4 5 52.7 ± 2.5

GdTL-3720 ZAPR_12 330 2.86 ± 0.10 156 ± 6 9 54.4 ± 3.0

GdTL-3721 ZAPR_13 270 2.81 ± 0.10 51.8 ± 1.5 7 19.3 ± 1.0

GdTL-3722 ZAPR_14 210 2.72 ± 0.10 49.9 ± 1.5 8 19.2 ± 1.1

GdTL-3723 ZAPR_15 110 2.48 ± 0.10 38.1 ± 0.8 5 15.3 ± 0.7

GdTL-3724 ZAPR_16 50 3.09 ± 0.11 42.6 ± 1.0 5 14.5 ± 0.7

GdTL-3725 ZAPR_17 550 2.99 ± 0.10 162 ± 6 14 56.7 ± 3.0

GdTL-3726 ZAPR_18 460 3.10 ± 0.11 154 ± 6 13 52.0 ± 3.0

GdTL-3727 ZAPR_19 450 2.75 ± 0.10 129 ± 4 11 49.7 ± 3.0

GdTL-3728 ZAPR_20 340 2.88 ± 0.10 150 ± 5 10 54.8 ± 3.0

Dose rate values obtained with different system detectors and final Bayesian estimation.
Final age derived from the central age model (CAM).
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4. Results and Discussion

14C AMS ages earlier published by Jary (2007) are presented 
in Fig. 2. The new OSL ages for quartz (45–63 µm) and the 
14C AMS ages are shown in Tables 1 and 2, respectively.

The new results of our research on the chronology of the 
Zaprężyn LPS confirmed the problem previously signalled 
by Zöller et al. (2022). All results of 14C ages obtained from 
humic acids in Zaprężyn LPS are underestimated, which is 
not a new experience in the study of 14C ages. Humic acids 
are always considered as a last-choice material for 14C dating. 
The 14C ages based on humic acids may be affected by the 
presence of humic acids from younger soil horizons located 
above a sample (e.g. Wild et al., 2013).

Due to parallel OSL dating performed in two inde-
pendent laboratories, we believe that we are able to ver-
ify the previous stratigraphic interpretation of Zaprężyn 
LPS.

4.1. Loess and Soil Units – Description and Interpretation
New stratigraphic interpretation is done based on the OSL 
ages obtained in two independent laboratories, field obser-
vations and the results of detailed granulometric studies 
(Fig. 4).

Zaprężyn LPS consists of four lithopedostratigraphic 
units (Figs. 5 and 6) developed during the Late Pleistocene 
and Holocene: two loess units (L1LL1, L1LL2) and two soil 
units (S0 and S1).

Table 2. 14C ages of gley horizons in Zaprężyn LPS.

No. Lab. No. Sample name Age 14C (BP) Range of calendar (calibrated)  
age 68.3% confidence level

Range of calendar (calibrated)  
age 95.4% confidence level

1 GdA-6300 ZAPR_1/440  23930 ± 180 28290BP (68.3%) 27825BP 28580BP (95.4%) 27755BP 

2 GdA-6301 ZAPR_2/441 24440 ± 270 29030BP (68.3%) 28350BP 29180 (95.4%) 27940BP

3 GdA-6302 ZAPR_3/442 22500 ± 200
27090BP (39.9)% 26780BP

26710BP (28.4)% 26485BP
27225 (95.4%) 26380BP

4 GdA-6303 ZAPR_4/443 24620 ± 250 29145BP (68.3%) 28660BP 
29470 (0.6%) 29400BP

29325 (94.8%) 28085BP

The age was calibrated using OxCal program v4.4 (Bronk Ramsey, 2009) with calibration curve IntCal20 (Reimer et al., 2020).

Fig 4.  Relative probability density functions for equivalent dose distribution for all investigated OSL samples. Relative probability density  functions 
 according to Berger (2010). 
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Fig 5.  Lithology, fraction percentages, grain-size parameters and stratigraphic units (acc. Marković et al. (2015) in the Zaprężyn LPS). 

4.1.1. S1 soil unit
A fossil soil S1 was developed in the lowest part of the 
section (ZAP18). This luvisol is underlain by fluvioglacial 
Warta stage sand and gravel deposits, with illuviation clear-
ly visible in the upper part. Due to the basic lithological 
characteristics of the substrate, the illuvial horizon Bt is not 
clearly defined. Both the accumulation A horizon and the 
eluvial horizon Et above have concentrations of charcoals 
that are just slightly distorted. Using 14C AMS, these char-
coals were dated to be older than 50 ka BP (Fig. 2; Jary, 
2007). According to the OSL dating data provided by Zöller 
et al. (2022) and Moska (this work) (Fig. 6), this unit is of 
Eemian-Early Vistulian age (MIS 5; Marks et al. 2016). All 
loess profiles in south-western Poland, S1 units, share com-
parable morphological characteristics. However, it clearly 
differs from the loess profiles in central and eastern Poland, 
where in the upper part of the S1 soil unit a thick cherno-
zem has developed (Jersak, 1973a,b; Maruszczak, 1991; 
Jary, 2007; Jary and Ciszek, 2013).

4.1.2. Loess unit L1LL2
L1LL2 loess unit occurs above the S1 soil unit (ZAP17-
ZAP6). The Zaprężyn LPS L1LL2 unit is distinguished by 
its substantial thickness (3 m) and the presence of several 
different tundra-gley layers (ZAP15, ZAP12, ZAP10 and 
ZAP7). As in many other loess sections in SW Poland, the 
S1 and L1LL2 units’ boundaries are clearly defined (Jary, 
2007, 2010). A thin layer of loess/soil colluvium is present 
above this boundary (ZAP17). The L1LL2 unit is primarily 

composed of fine silt (4–16 µm) in the lower section and 
coarse silt (32–63 µm) with sand (>63 µm) inserts in the 
top part. The sharp, erosional barrier separates the L1LL2 
loess from the unit above. Although the ages obtained in 
the Bayreuth laboratory by Zöller et al. (2022) are often a 
little older than in Gliwice, the OSL dating results of the 
two laboratories are comparable. With the help of the ac-
quired data, the studied unit can be correlated to the Lower 
Plenivistulian (MIS 4). Numerous tundra-gley horizons 
found in the L1LL2 unit may be connected to the Lower 
Plenivistulian cyclic climate change. Similar characteris-
tics have been observed in the Biały Kościół (Jary, 2007; 
Moska et al., 2015; Skurzyski et al., 2020); Złota (Jary, 
2007; Moska et al., 2018; Zöller et al., 2022); and certain 
LPSs in Saxony (Meszner et al., 2011; Meszner and Faust, 
2016).

4.1.3. Ice wedge pseudomorph in L1LL2 unit
Zaprężyn LPS is the only loess site in south-western 
Poland where the ice wedge pseudomorph in the L1LL2 
loess unit was observed. Ice wedge casts of this genera-
tion have not been discovered in any other loess region of 
south-western Poland, despite complete field exploration 
(Jersak, 1975, 1976, 1991; Jary 1996, 2007, 2009, 2010). 
The presence of the Lower Plenivistulian permafrost condi-
tions in the Trzebnica Hills is confirmed by the ice wedge 
pseudomorph. The onset of the Middle Plenivistulian  
(MIS 3) is when the permafrost breakdown began, according 
to OSL ages (Fig. 7).
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4.1.4. Unconformity
The upper border of the L1LL2 loess unit (between ZAP6 
and ZAP5) is erosive, as described earlier (Zöller et al., 
2022). A loess unit L1LL1 is seen above. According to the 
results of OSL dating, this unconformity indicates a peri-
od of time that is >30 ka (Fig. 6). The absence of a L1SS1 
soil unit, which was most likely entirely eroded here, is ex-
plained by this unconformity. The deposition of loess above 
the unconformity began 18–19 ka, just after the Last Glacial 
Maximum (Marks, 2012). The unconformity  surface can be 
considered proof of extremely hard climatic conditions that 

existed during the Last Glacial Maximum, caused by prox-
imity to the ice sheet margin (ca 70 km from Zaprężyn LPS).

4.1.5. Loess unit L1LL1
The thickness of the loess unit L1LL1 (ZAP5-ZAP2) is 
roughly 2 m. It consists mainly of massive and laminated 
loess and the grain size is dominated by the course silt frac-
tion (32–63 µm), with several sand inserts (>63 µm). They 
most likely provide proof that loess deposition in the Upper 
Plenivistulian occasionally involved periods of relatively brief 
transport and intense wind dynamics (Jary, 2007; Krawczyk 

Fig 6.  The new 14C and OSL ages obtained in Gliwice laboratory, OSL ages published by Zöller et al. (2022) and revised stratigraphical interpretation of 
the Zaprężyn LPS. 
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et al., 2017). According to the OSL ages, the L1LL1 loess 
in the Zaprężyn LPS was deposited between 19 ka and 14 
ka, which is a relatively short period (Fig. 6). The end of the 
loess deposition in Biały Kościół according to OSL ages, oc-
curred between 18 ka BP and 19 ka BP (Moska et al., 2011, 
2012, 2019a). This supports the theory that the loess deflation 
and deposition zones moved over a significant climatic gradi-
ent between the northern and southern parts of south-western 
Poland during the Last Glacial (Jary, 1996; Jary and Kida, 
2000; Lehmkuhl et al., 2021).

4.1.6. Soil unit S0
Modern brown soil S0 has been developed at the top of the 
L1LL1 loess unit (ZAP1). The accumulation horizon Ap 
(0.00–0.35 m), the B horizon (0.35–0.60 m) and the transi-
tional horizon BC (0.60–0.95 m) make up this genetic ho-
rizon system. Due to its morphological position, the S0 soil 
is relatively thin and is located on a farmed, eroding slope 
surface. The soil substrate OSL age suggests that the material 
may have been deposited even during the Late Glacial of the 
Vistulian glaciation.

Fig 7.  Results of OSL dating of the ice wedge pseudomorph in Zaprężyn LPS: red dot - Zöller et al. (2022) result; black dots – Moska OSL results. 
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5. Conclusions

In this study we present the obtained results of OSL and 14C 
AMS dating of the Zaprężyn LPS, the northernmost loess 
section in south-western Poland. We compared the studied 
LPS with other sequences, especially with the Biały Kościół 
LPS, pointing out the similarities and differences between 
corresponding stratigraphic units.

The most important conclusions are:

 • The results of LPS dating should be interpreted with caution.
 • All results of 14C ages obtained from humic acids in 

Zaprężyn LPS are underestimated.
 • Comparing the dating results from the two laboratories, 

the upper part of the profile showed that the dating results 
are in agreement. The data from the Gliwice laboratory 
are clearly younger in the lower part of the LPS, espe-
cially in L1LL2.

 • Zaprężyn LPS is composed of a relatively well- 
developed Lower Plenivistulian L1LL2 unit. The Upper 
Plenivistulian L1LL1 loess unit is represented only by the 
final phase of its deposition.

 • The ice wedge pseudomorph confirms the presence 
of permafrost conditions in this area during the Lower 
Pleniglacial. The permafrost decay occurred at the begin-
ning of the Middle Pleniglacial.

 • The unconformity can be interpreted as a proof of 
extremely hard climatic conditions during the Last 
Glacial Maximum caused by proximity to the ice sheet 
margin.

 • The Zaprężyn LPS confirms the hypothesis about a con-
siderable climatic gradient between the northern and 
southern parts of the study area which influenced on mi-
gration of the loess deflation and deposition zones during 
the Last Glacial.
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