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1. Introduction

Since the late 1970s, global warming has increased  aridity 
in many continental regions, putting additional stress on 
semi-arid forestsin particular (Dai, 2013; Ji et al., 2014). 
Due to global warming, northwest China’s precipitation 
and temperature have risen substantially in recent years, 
 changing the region’s climate from warm-dry to  warm-wet 
(Shi et al., 2006; Yao et al., 2016). Consequently, the 
 ecological and physiological processes of forest  ecosystems 
in the mountains of northwest China have been influenced 
by the recent climate change (Li et al., 2015).

Both the ecosystem dynamics in forests and changes in 
climate can be studied utilizing tree rings (Gou et al., 2012). 
Dendrochronological studies of tree-growth responses to 
climate factors and subsequent reconstructions of  historical 
climate history have been carried out in various regions of 
the world (Büntgen et al., 2005; Shao, 2005; D’Arrigo et al., 
2009; Chen et al., 2015). The growth of trees and how they 
respond to climate variability have received a lot of atten-
tion in relation to global climate change (Savva et al., 2006; 
Sang et al., 2007; Wu et al., 2015). Changes in tree growth 
and forest production may result due to climate change.  
In addition to the fact that such changes in tree growth are 
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an ecological concern, an understanding of how tree growth 
responds to climate influences is a critical component of 
global climate-change research (Liang et al., 2006).

Mountains are regarded widely as excellent sensors of 
climate change, chiefly because of the complexity of moun-
tain climate and topography and their interactions with 
each other. Thus, elevation is one of the factors said to have 
an important influence on mountain tree growth (Malanson  
et al., 2011; Wang et al., 2015a). It is generally believed 
that in arid and semi-arid mountain areas, precipitation in 
low-elevation areas and temperature in high-elevation areas 
are major factors influencing tree development. However, 
global warming has changed the current climatic conditions 
in the mountains. For example, Liang found in their study 
on Qinghai Spruce (Picea crassifolia Kom.) that, in the con-
text of climate change, the radial growth of trees showed a 
high dependency on precipitation and air humidity (Liang  
et al., 2016). Jiao et al. (2015) used moving correlation func-
tions to assess the growth–climate relationship’s temporal 
stability and revealed that Larix sibirica exhibited positive 
sensitivity to temperature, which decreased throughout the 
growing season. As the Tian Shan region’s most significant 
zonal forest vegetation, the Schrenk spruce forms the main 
part of the Tian Shan forest ecosystem. It is mainly distrib-
uted on the middle-low mountain-subalpine shady slopes, 
at an altitude of 1200–3500 m a.s.l. It has advantages such 
as possessing clear annual rings, a wide distribution and 
sensitivity to climate, which also makes Tian Shan an ideal 
area for tree-ring climate research. In a previous study, 
Huo et al. (2017) observed an association between Schrenk 
spruce’s radial growth and climate factors at various 
 elevations in the western Tian Shan Mountains, China. Jiao 
et al. (2016) analysed the radial growth of Schrenk spruce 
at different elevations and the response stability of the main 
climate factors using a moving  correlation function in the 
east of the Tian Shan Mountains, China. However, there are 
few reports on the stability of the tree-ring growth–climate 
responses of Schrenk spruce at different elevations in the 
western Tian Shan Mountains in the background of global 
warming.

In this study, we have created chronologies based on 
the width of the tree rings of Schrenk spruce at three eleva-
tions of the western Tian Shan Mountains, examined the 
characteristics of the three chronologies and analysed how 
climate change is affecting the growth patterns of the trees 
in the western Tian Shan Mountains.

2. Materials and Methods

2.1. Study Area
The study area is located in the Wusun Mountain in the 
west of Yili region, Xinjiang, China. The Wusun Mountain 
is a branch of the Tian Shan Mountains. It is one of the 

mountains that forms the Zhaosu Basin, having the charac-
teristics of high mountains and a mid-temperate continental 
climate. This study is focused on the northern slope of the 
Wusun Mountain at an elevation of 2000–2810 m, which 
has rich vegetation. The slope of the Wusun Mountain is 
a perfect example of the vertical distribution of climate, 
topography and vegetation (Fig. 1).

2.2. Tree-Ring Data
In June 2020, the research team established sample sites 
at three elevations, a low forest site (2000–2100 m a.s.l.), 
a middle forest site (2500–2565 m a.s.l.) and an upper tree 
line site (2800–2810 m a.s.l.) (Table 1). Only trees free 
of obvious damage and illness were sampled to reduce 
the non-climatic impacts on tree growth. Typically, two 
cores were removed from each tree at a breast height (1.3 
m) along the vertical and parallel slopes. For the incre-
ment core samples, 20–30 of the oldest and largest trees 
at each location were chosen. To collect climate data from 
sensitive trees and reduce non-climatic signals from nearby 
disturbances and also the competition between trees, trees 
were chosen subjectively. We gathered 145 cores altogether 
from 72 live Schrenk spruce.

All of the cores were put in hardwood boards with 
slots and polished in the laboratory until the annual ring 
 limits could be clearly seen. With the LINTAB measure-
ment  system, the width of each tree ring was measured with 
a resolution of 0.001 mm (TM5, Rinntech, Heidelberg, 
Germany). The computer program COFECHA was used 
to verify the quality of all measured tree-ring sequences 
(Holmes, 1983). We employed autoregressive  modelling 
to mitigate the autoregressive properties in the series and 
subsequently merged the processed data to generate a 
 chronology by calculating the biweight robust means, which 
minimised the influence of outliers (Cook and Kairiukstis, 
2013). In total, 130 cores were left for additional analy-
ses after any ambiguous cores were eliminated. Using the 
ARSTAN program’s established standardisation methodol-
ogies, we created site chronologies (Cook, 1985). To reduce 
the noise from individual trees, the standardisation method 
averages the detrended ring widths of all the series at a site 
and removes the non-climatic variability from each tree-
ring series (Fritts, 2012). The tree-ring width series were 
detrended using a negative exponential approach to remove 
the signals of tree ages that were influenced by causes 
other than climate (Liu et al., 2010). The effectiveness of 
the replication in the early years of the chronology can 
be evaluated using the subsample signal strength (Wigley  
et al., 1984). Therefore, to provide a trustworthy chronology 
length, a subsample signal strength of >0.85 was applied.

2.3. Climatic ʹData
The Qapqal Meteorological Station (43°48′N, 80°47′E, 
1060 m a.s.l.) of the National Meteorological Information 
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Fig 1.  Map of the tree-ring sampling site and meteorological station in this study.

Table 1. Tree-ring sampling point information.

Sample site Longitude Latitude Elevation (m) Species Aspect Canopy closure

High 81°02ʹ2.37ʺ 43°24ʹ37.48ʺ 2800–2810 P. schrenkiana N 0.1

Middle 81°02ʹ6.41ʺ 43°25ʹ14.50ʺ 2500–2565 P. schrenkiana N 0.2

Low 81°07ʹ12.34ʺ 43°27ʹ54.69ʺ 2000–2100 P. schrenkiana N 0.7

P. schrenkiana, Picea schrenkiana.

Centre (NMIC) of China provided the mean monthly 
 temperature, precipitation data and relative humidity infor-
mation for the 1960–2015 time frame. Being the closest 
meteorological station and there were no missing values, 
we utilised to work with this station.

Numerous dendroclimatological studies have 
 emphasised time and time again that the influence of climate 
on tree-ring development varies depending on the climatic 
region, with effects not only during the growth season but 
also in the time leading up to it (Heinrich et al., 2013; Opała 
and Mendecki, 2013). Therefore, in this study, the climate 
data from September of the previous year to October of the 
current year were selected for the response  analysis with the 

chronology. According to the meteorological data records, 
the annual average temperature in this area is 11.30°C and 
the annual temperature difference is large. The average tem-
perature in January is −10.63°C, compared with 23.38°C in 
July, and the annual precipitation is 225.86 mm. The sum-
mer precipitation reaches the annual precipitation peak, and 
the rain and heat occur in the same period (Fig. 2).

2.4. Statistical Analysis
With the use of Pearson’s correlation tests, the association 
between the tree-ring chronologies (Fig. 3) and the mean 
monthly temperature, precipitation, and relative humidity 
was examined.
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Fig 2. Meteorological data.
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Using the sliding correlation function in the 
Dendroclim2002 program, the dynamic changes of the 
relationship between the tree-ring chronology and each 
meteorological factor were analysed (the sliding window 
was set to 30 years, and each sliding was 1 year).

The standardised chronology information of tree-ring 
width at different elevations can be obtained from Table 2.  
The percentage of the first eigenvector indicates the syn-
chronicity of each sample sequence in the chronology. The 
larger the percentage of the first eigenvector, the stronger the 
synchronisation of the sample sequence and the more the cli-
mate information contained in the chronology. The percent-
age of the first eigenvector of the three chronologies ranged 
from 0.285 to 0.451, and the synchronisation was generally 
good. The signal-to-noise ratio is the noise ratio between 
the climatic signal and the non-climatic signal factors (Gou  
et al., 1999). In other words, the chronology with a high sig-
nal-to-noise ratio contains more climate information, and the 
chronology with low-elevation tree-ring width is the larg-
est among the three chronologies. The representativeness 
of the samples to the population all exceeded the minimum 

Fig 3.  Variation of tree-ring width index at different elevations.

Table 2. Statistical features of tree-ring width standardised chronology at 
different elevations.

Statistical characteristics High Middle Low

Percentage of the first eigenvector 0.285 0.397 0.451

Mean within-tree correlation coefficient 0.158 0.313 0.409

Signal-to-noise ratio 6.807 13.946 28.146

Representative of the sample to the 
population

0.872 0.933 0.966

Standard deviation 0.226 0.183 0.279

Mean sensitivity 0.171 0.126 0.210

First-order autocorrelation coefficient 0.589 0.653 0.596

threshold of 0.85, which shows that the chronology of the 
three sampling points can represent the basic characteristics 
of the growth of Schrenk spruce in the study area (Wigley  
et al., 1984). The first-order autocorrelation coefficients of 
the three chronologies ranged from 0.589 to 0.653, demon-
strating that the radial growth of trees at the three elevations 
was significantly affected by the previous year.
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3. Results and Analysis

3.1.  Correlation between Tree-Ring Width and Meteoro-
logical Factors at Different Elevations

In the investigation of the relationship between the chronol-
ogy of tree-ring width and the meteorological variables at 
each elevation, precipitation in November of the previous 
year was strongly positively linked with the tree-ring width 
chronology at high elevation, and precipitation in February 
of the present year was strongly negatively linked with the 
tree-ring width chronology at low elevation. In the correla-
tion analysis with the average temperature, the key finding 
was a strong positive association between December of the 
previous year and the tree-ring width chronology at high 
elevation; the tree-ring width chronology at mid-elevation 
had a significant positive correlation with November–
December of the previous year and April–July of the cur-
rent year; the tree-ring width at low elevations had a signif-
icant negative correlation with September–October of the 
previous year and July–October of the current year. In the 
correlation analysis with relative humidity, the main results 
were that the tree-ring width chronology at high elevation 

had a significant positive correlation with October of the 
previous year, the tree-ring width at mid-elevation had a 
significant negative correlation with January–February and 
September of the current year and the tree-ring width at 
low elevation had a significant positive correlation with 
September of the previous year and March, May and July–
August of the current year (Fig. 4).

3.2.  Sliding Correlation Analysis of Climatic Variables at 
Various Heights and Tree-Ring Width Chronology

The sliding correlation between the tree-ring width chro-
nology and meteorological factors at different elevations 
showed that the response of tree radial growth to precipita-
tion at the three sampling points fluctuated. After 1976, the 
sensitivity of the radial growth of trees at the three sampling 
sites to precipitation in November of the previous year 
increased. During the period 1986–2015, high elevation 
and low elevation were not significantly correlated with 
precipitation, and middle elevation showed a significant 
positive correlation. The significant negative correlation 
between precipitation and low elevation in February of the 
current year increased, weakened after 1974 and changed 

Fig 4.  Correlations between the tree-ring width chronologies and the meteorological data at different elevations.
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to a significant negative correlation after 1982. In the slid-
ing correlation with temperature, the main manifestation 
is that low elevation has a significant positive correlation 
with September–December of the previous year in 1968–
1974 and with May–June of the current year in 1972–1978. 
In the sliding correlation with relative humidity, the main 
manifestation is a significant positive correlation between 
high elevation and September–November of the previous 
year after 1984, an enhanced significant negative correla-
tion between middle elevation and January of the current 
year and a general weakening of the significant negative 
correlation of low elevation to relative humidity (Fig. 5).

4. Discussion

4.1.  Response Analysis of Tree Radial Growth and 
 Meteorological Factors at Different Elevations

Elevation has important effects on tree radial growth through 
hydrothermal differences. Precipitation at low  elevation is 
typically thought to be the main limiting  element of tree 
radial growth, while temperature at high  elevation is gen-
erally thought to be the main limiting  factor. (Wilson and 
Hopfmueller, 2001; Yuan, 2003; Li et al., 2006; Solomina 
et al., 2012; Zhang et al., 2012; Chen et al., 2013; Solomina 
et al., 2014; Wang et al., 2015b; Zhang et al., 2016a,b, 

2017a,b, 2019, 2020). The radial growth of trees at high 
elevation showed a significant positive correlation with 
the meteorological factors from October to December of 
the previous year. With the process of climate warming, 
 climatic complexity increases along elevation gradients, 
so that tree radial growth may respond in different ways 
or to a different extent at different elevations (Lyu et al., 
2016, 2017). So, the meteorological factors are exerting a 
highly critical influence on the radial growth and dynamic 
evolution of high-elevation forest trees (Liang et al., 2016; 
Jiang et al., 2017; Yang et al., 2017; Peng et al., 2019). 
Meanwhile, there is abundant precipitation in the Yili area 
of Xinjiang, China, and the hydrothermal combination in 
some areas is relatively complex. Therefore, it is challeng-
ing to identify the primary climatic conditions that limit the 
radial growth of trees (Zhang et al., 2016c).

The radial growth of trees at mid-elevation was mainly 
affected by the significant positive correlation between the 
average temperature in November and December of the 
previous year and the average temperature in April–July 
of the current year. There was a significant negative cor-
relation effect of relative humidity in January, February 
and September of the current year. There was a certain 
difference between mid-elevation and high–low elevation, 
which may be due to the difference in the response patterns 

Fig 5.  Moving correlation between the tree-ring width chronology and meteorological data at different elevations.
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of mid-elevation and high–low elevation due to the differ-
ence of the largest precipitation zone in the middle of the 
forest, local small terrain or the microclimate (Shirenna  
et al., 2020). Under the condition of sufficient water, a 
higher temperature is beneficial to the photosynthesis of 
plants and promotes the growth of trees.

The relative humidity reflects the moisture content in 
the air (Xu et al., 2013). It affects tree growth by affect-
ing water evaporation, vegetation transpiration and pho-
tosynthesis. In this study, the relative humidity promoted 
the radial growth of trees at high and low elevations.  
The radial growth of Schrenk spruce at high and low ele-
vations is mostly constrained by water conditions, while 
the radial growth of trees at mid-elevation is mainly lim-
ited by temperature. Furthermore, the same results have 
been obtained in other studies in the Tian Shan mountains 
(Shirenna et al., 2020).

4.2.  Dynamic Response of Tree Radial Growth at Different 
Elevations to Climate Change

In the context of global warming, the dynamic response of 
forests to climate change has become an important issue for 
scientists. By analysing the sliding correlation between the 
radial growth of spruce trees and the meteorological factors 
at different elevations, it can be concluded that there was an 
unstable response relationship between the radial growth of 
Schrenk spruce and meteorological factors at different el-
evations. Similar results have been reported in the Southern 
Appalachian Mountains, European Mediterranean Basin, 
Qilian Mountains, Northeast Tibet Plateau and Tian Shan 
Mountains (Zhang and Wilmking, 2010; Gao et al., 2013; 
Tegel et al., 2014; White et al., 2014; Jiao et al., 2015). Fig. 2 
shows that there was an escalating trend in both precipita-
tion and temperature, but that the evaporation rate caused 
by the increase in temperature was much larger than the 
precipitation increase, and the area showed a warm and dry 
trend. With the increase in temperature, water stress is the 
principal barrier to tree radial growth. From September to 
November of the previous year, the growth of trees stopped, 
but they could still carry out a certain amount of photosyn-
thesis. The period’s humid weather was favourable for the 
buildup of photosynthetic products and promoted the rapid 
growth of the early wood of trees. The significant increase 
in temperature accelerated the evaporation of water, gradu-
ally increasing the limiting effect of water on trees. That is 
to say, the relative humidity from September to November 
of the previous year was positively correlated with the ra-
dial growth of trees, and there was a significant increasing 
trend.

The sliding analysis of mid-elevation tree-ring chro-
nology and meteorological factors mainly indicated an 
unstable relationship with precipitation and relative humid-
ity, and the correlation was generally better than that of 

temperature. In the background of climate warming, the 
weakened temperature response to tree radial growth in the 
context of climate warming may be caused by the reduced 
temperature limitation and the associated water stress due to 
apparent warming. The correlation between tree-ring width 
and relative humidity and precipitation was stronger than 
that with temperature, which supports the conclusion that 
temperature-driven water budget changes are more impor-
tant to the radial growth of Schrenk spruce than the effect 
of temperature on physiology itself (Liang et al., 2016).

5. Conclusion

The tree-ring chronology at different elevations contains 
abundant environmental information, and the correlation 
analysis between the tree-ring width chronology at each 
elevation and meteorological factors showed that the ra-
dial growth of high-elevation trees was mainly affected by 
the meteorological factors in the non-growth season of the 
previous year. The radial growth of mid-elevation trees was 
mainly affected by temperature. The radial growth of low-
elevation trees was mainly affected by both temperature 
and relative humidity. In the study area, the radial growth 
of Schrenk spruce mainly fluctuated in response to pre-
cipitation and relative humidity, while the radial growth of 
Schrenk spruce at low elevation was unstable in response 
to temperature. Climate change, especially in the back-
ground of climate warming, caused rapid warming in the 
study area resulting in enhanced evaporation. The resulting 
intensification of drought may have negatively influenced 
the radial growth of Schrenk spruce at low elevations, but 
moderate warming is expected to lead to increased radial 
growth of Schrenk spruce at high and mid-elevations. In 
future tree-ring research, it is necessary to detect the re-
sponse stability of tree growth and meteorological factors 
to ensure the accuracy of climate reconstruction and to pay 
more attention to the relationship between climate change 
and forest ecosystems.
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