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1. Introduction

The timing of periglacial events on the Polish Lowland is 
reconstructed primarily on indirect premises: (1) dating of 
biogenic sediments in periglacial deformations (Klatkowa, 
1990, 1996; Goździk, 1996; Petera, 2002), (2) the relation-
ship between these structures and periglacial evidence to 
glacial phases of the last ice sheet and (3) the dating of 
periglacial mineral sediments (Mojski, 2005; Turkowska, 
2006; Marks et al., 2016).

Periglacial sediments and landforms are common in the 
Polish landscape and comprise slope features, river valleys, 
denudational plains and drainless depressions (Dylik, 1967; 
French, 2007). Periglacial processes transformed older 
landforms and created new ones. In Central Poland, there 
are many small buried depressions of the Saalian Glaciation 

(MIS 6) age which were filled with lacustrine-terrestrial 
deposits during the Eemian or the Early Vistulian, covered 
with mineral deposits and deformed in a periglacial envi-
ronment during the Last Glacial Termination (LGT).

In the second half of the 20th century, Central Poland 
was intensively studied and traces of the Vistulian 
(Weichselian) periglacial processes were identified (e.g., 
Dylik, 1963, 1967, 1969; Dylikowa, 1964; Goździk, 1973), 
including at the Józefów site. In the 1960s, research at 
Józefów was based primarily on the examination of peri-
glacial features in the exposures. The age of the deposits 
was determined based on a pollen analysis of underlying 
sediments, which were correlated with the Amersfoort-
Brörup interstadial (Dylik, 1969). The Józefów site con-
sisted of four fossil depressions, in which sediments and 
deformation structures were identified as fragments of a 
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relict pingo (Dylik, 1963, 1967), and so far the only docu-
mented fossil pingo in Poland.

This study aimed to determine the lithostratigraphy of 
the Vistulian deposits supported by their sedimentologi-
cal features at this site. Recently, research at Józefów has 
resumed in the most accessible shallow, closed basin with 
a dry bottom, which allowed the geological work to be per-
formed using drillings and outcrops.

The Optically Stimulated Luminescence (OSL) method 
has been used successfully to date periglacial depos-
its at many Vistulian sites in Poland and aeolian depos-
its in the Polish part of the European Sand Belt: in the 
Silesian Lowland, the southern Mazovian Lowland and the 
Sandomierz Basin (Dobrowolski and Fedorowicz, 2007; 
Kalińska and Wyszomierski, 2010; Gębica et al., 2016; 
Moska et al., 2020, 2021b, 2023). These results show that 
aeolian deposits were formed during the Late Pleistocene 
when large ice sheets covered much of northern Europe. 
As the climate warmed up and the ice sheet retreated, vast 
amount of sand was exposed and mobilised by wind and 
therefore, this area is extremely interesting due to the high 
dynamics of changes.

Another significant area in Poland is its loess region, 
which allows to select the lithostratigraphic sequences 
spanning hundreds of thousands of years. The Polish 
extensive loess covers are known particularly from the 
central and eastern parts of the country. Loess has been 
widely used for optically stimulated luminescence dating 
(OSL; Moska et al., 2012, 2015, 2017, 2019; Gębica et al., 
2016).

Periglacial sediments are well suited for OSL dating, 
but a single field reconnaissance and sampling strategy 
constitute a key consideration. We expect that OSL dating 
and lithological methods, which have not previously been 
applied at this site, may provide new input about the origin 
of sediments. This is a starting point for a more detailed 
approach to the recognition of processes and climatic con-
ditions during the Vistulian, which is very diverse in terms 
of climatic conditions.

2. Study Site

The Józefów site (51°49′59.32″N, 19°53′24.7″E) is  located 
on the Łódź Upland, in the third-rank watershed separat-
ing the Mroga and Jeżówka and Rawka river  catchments. 
This area was formed primarily during the Warta Stadial 
of the Odranian (Saalian) Glaciation (Figs. 1A,B and 
Table 1) and is dominated by tills, glacial and glacio-
fluvial sand and gravel (Nowacki, 1993; Trzmiel, 1994) 
and slope sand and silt, activated by Vistulian denudation 
processes.

The examined Józefów basin is amidst a dozen or so 
such features located on a glacial moraine plateau which 
is cut off from the surrounding area by denudation valleys 
that run westwards to the Mroga River valley and east-
wards to the Rawka valley. The studied depression lies at 
about 200 m a.s.l., reaching to 211.5 m a.s.l and 212.7 m 
a.s.l. about 1 km to the south-west and north-east.

3. Material and Methods

Five outcrops were examined, two of which were partially 
exposed with walls of excavations made in the 1960s (sec-
tions II and V, on Fig. 2).

3.1. Lithological Analysis
Samples were collected from the same layer used for the 
dating. The grain-size analysis included examination of ma-
terial using sieves (intervals 0.3–0.5 φ; dry sieving method) 
(Mycielska-Dowgiałło, 1995) for each of the documented 
sections in outcrops (Fig. 2). Using the Folk and Ward’s 
formula (1957), the particle coefficients were determined 
for each sample: mean grain diameter (Mz), sorting (σI) 
and skewness (SkI). Sedimentary environments were deter-
mined based on the roundness and morphoscopy of quartz 
grains (fraction 0.63–0.8 mm) by the modified Cailleux 
method (Cailleux, 1942; Klatkowa, 1991; Manikowska, 
1993). Five types of grains were determined: RM – round, 
mat (abraded in aeolian transport); EL – shiny (typical of 
fluvial environments); M – mediate; C – cracked (with 
earlier processing); NU – non-processed, fresh grains. The 
results are presented partially in this article, and selected 
samples of deposits are OSL dated (Table 1). Deposits 
were divided into lithofacies based on codes proposed by 
Zieliński (2015) (Table 2).

Sediment structures, their post-sedimentary deforma-
tions and contacts between the series were documented for 
all examined outcrops. Their detailed analysis will be pre-
sented in a subsequent paper.

3.2. Luminescence Dating
All samples for luminescence dating were taken from the 
sections with most characteristics, from a clean vertical 
outcrop using thin-walled steel pipes. The measurement 
was carried out in the Gliwice luminescence dating labo-
ratory (Moska et al., 2021a). For dose-rate determination, 
high-resolution gamma spectrometry was performed us-
ing a HPGe detector manufactured in Canberra in order to 
determine the content of U, Th and K in the sample ac-
cording to the laboratory protocol (Moska et al., 2021a). 
Dose rates were calculated using an online dose-rate cal-
culator (Tudyka et al., 2023), which contains all the latest 
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Fig 1.  (A) Location of the study site in relation to extents of ice sheets, (B) Location on the geological background (according to SMGP 1:50,000). 
Holocene: 1 – fluvial sand and mud; Vistulian: 2 – mineral-organic mud, 3 – deluvial sand and mud, 4 – fluvial sands; Warta Stadial: 5 – glacio-
fluvial sand, 6 – glaciofluvial sand and gravel, 7 – glacial sand with gravel, 8 – sand, gravel and boulder (morainic), 9 – glacial till; 10 – study site.

conversion factors. We assumed that the average water 
content was 15 ± 5%. Data for dose-rate calculations are 
presented in Table 3.

For OSL measurements, grains of quartz (90–125 µm) 
were extracted from the sediment samples by routine treat-
ment with 20% hydrochloric acid (HCl) and 20% hydrogen 
peroxide (H2O2) (Aitken, 1998). The quartz grains were 
sieved before they were separated using density separation 
with the application of sodium polytungstate solutions, 
leaving grains of densities between 2.62 g/cm3 and 2.75 g/
cm3. Finally, grains were etched with concentrated hydro-
fluoric acid (HF, 40 min).

All OSL measurements were performed using an 
automated Daybreak 2200 TL/OSL reader (Bortolot, 
2000) fitted with a calibrated 90Sr/90Y beta source 
delivering about 2.7 Gy/min to grains at the sample 
position. Daybreak 2200 uses blue diodes (470 ± 4 nm) 

delivering about 60 mW/cm2 at the sample position after 
passing through BG39 filters. Equivalent doses were 
determined using the single-aliquot regenerative-dose 
(SAR) protocol (Murray and Wintle, 2000). The OSL 
SAR protocol used in our measurements comprised the 
following steps:

1. Irradiation with the regenerative beta dose Di
2. Preheat at 260°C for 10 s
3. Blue light stimulation at 125°C for 100 s
4. Irradiation with the test dose Dt (~10% of natural dose, 

but not <1 Gy)
5. Cut-heat at 220°C
6. Blue light stimulation at 125°C for 100 s

Intensities measured in steps 3 and 6 were used for 
equivalent dose determination. For equivalent dose 
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calculation, the first second of the signal was used and the 
background was estimated from the last 10 s.

A preheat plateau test was performed for a few sam-
ples to establish the most appropriate preheat tempera-
ture. The preheat temperatures were varied from 200°C to 
300°C in 20°C steps. No systematic variation in De with 
preheat temperature was observed. Preheating the sample 
can also cause recuperation of the OSL signal (Aitken, 
1998). To test for this, a 0 Gy regenerative dose step was 
added into the SAR protocol (Murray and Wintle, 2000). 
The luminescence signal should then be zero. Any grains 
for which this sensitivity-corrected recuperated signal was 
>5% of the corresponding natural signal should be rejected, 
but for all measured aliquots of investigated samples, this 
signal was <5%.

Final equivalent dose (De) values were calculated for 
all samples using the central age model (CAM) (Galbraith 
et al., 1999) using the R ‘Luminescence’ package (Kreutzer 
et al., 2020). All obtained luminescence results are pre-
sented in Fig. 2, where the De distributions are presented 
in terms of relative probability density functions (Berger, 
2010). The overdispersion parameter was calculated for 

each sample; these were 20% or less for all samples, so 
CAM was applied for final equivalent dose calculations. 
For an overdispersion parameter <20%, the dose distribu-
tions are usually unimodal and it can therefore be assumed 
that the tested material represents the well-bleached 
quartzes (Moska et al., 2019).

4. Results

4.1. Lithological Analysis
In all outcrops, mineral deposits were distinguished as min-
eral and organic sediments. Eight lithofacies were distin-
guished in the sections. The oldest is a mineral-organic silt 
with sand (FSCd) in the central part of the basin, below 1.5 
m to 2.2 m depth (section I, II, IIIa, b, Fig. 2). This layer is 
2.5 m thick in the centre and disappears at the edge of the 
basin (section IIIa). In terms of grain size, these are silty-
sandy sediments, with a dominant very coarse silt (28.1%). 
The admixture of sandy fraction is significant (29.1%), 
among which very fine sand (22.2%) decidedly predomi-
nates, and the admixture of organic parts reaches only 5%. 
The average grain diameter (Mz) is 4.9 φ and the sorting 
factor (δ) is 0.0–0.7 φ. At the top, there is a large share 
of RM (round, mat) quartz-grain processing, reaching even 
37% (sample J_11, Table 1). All documented sections ex-
hibit significant deformations of the  FSCd layer, resulting 
from a secondary mixing of silt and sand, originally with 
horizontal stratification.

Overlying deposits contain much organic matter (Cd), 
resembling a peaty gyttja; the average content of organic 
matter is 75.9%. It lies below 1.6-2.0 m depth in the central 
part of the basin and is 0.2-0.4 m thick ( sections I, III). In 
a marginal part of the basin, the layer disappears at about 
1.5 m depth (section III, Fig. 2). This layer has strong post-
sedimentary deformations and is intersected by mineral-
organic silt with sand (FSCd), as well as contains fissures 
filled with sand (wedge structures) of a sandy lithofacies 
(SCd), with admixture of dispersed organic matter and bro-
ken fragments of the underlying peaty gyttja.

The sand is well or moderately well sorted with a high 
share of RM (round, mat) grains in quartz-grain processing, 
from 38% to 52% (J_8, J_12, J_17, Table 1). The sandy 
lithofacies (SCd) was documented only in fissure struc-
tures, open at the top of the organic lithofacies. The top 
part of the fissure structures is disturbed with the overlying 
layer and the boundary of these two lithofacies cannot be 
captured.

The overlying layer is composed of vari-grained sedi-
ments and varied thicknesses (sections I, II, IIIa). It is 
composed of sand with gravel (SGm) including coarse- and 
vari-grained sand, mostly with an admixture of gravel to a 
45% or admixture of fines (3.8–15.7%). These deposits are 

Table 1.  Results of lithological analysis for most samples of deposits used 
for luminescence dating.

Sample

ID

Ratios(phi) Morphoscopyofquartzgrains(%)

Mz σI SkI RM EL M C NU

J_1 2.2 1.5 −0.5 34 10 31 19 6

J_8 2.2 09. 0.0 39 9 38 11 3

J_9 2.1 1.2 −0.3 35 9 36 16 4

J_10 2.2 1.4 −0.3 39 11 35 13 2

J_11 3.0 1.7 0.0 37 11 30 17 5

J_12 38 6 46 8 2

J_13 1.6 2.0 −0.1 50 4 38 6 2

J_14 50 5 33 10 2

J_15 4.9 3.4 0.7

J_16 4.4 1.8 0.5 28 18 36 15 3

J_17 2.1 1.05 −0.1 52 8 32 7 1

J_18 2.3 1.5 0.1 49 3 37 9 2

J_19 3.7 3.3 0.5 44 6 33 13 4

J_20 2.1 2.1 0.1 45 9 33 12 1

J_21 1.7 1.3 −0.1 41 10 39 9 1

J_22 1.7 1.1 −0.1 45 9 35 9 2

J_23 1.9 1.0 0.0 36 11 34 16 3

J_24 1.6 0.9 0.0 38 8 38 14 2

J_25 8.4 3.4 0.5 35 9 31 19 6
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Fig 2.  Orthophotomap view of the Vistulian deposits sequence in sections I-V (their location is marked on topographic sketch below) with distinguished 
lithofacies (Table 2) and sampling sites for luminescence dating (Table 3).
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massive and poorly or very poorly sorted (SD = 1.5–3.1 φ),  
but if a fine material predominates, the sorting is 1.1–1.4 φ.  
Quartz-grain processing indicated a predominance of aeo-
lian grains (RM = 35–49%) with a low share of shiny grains 
(EL), cracked (C) and non-processed grains (C + NU) 
(Table 1).

In the central part of the basin, the overlying deposits 
are the lacustrine sediments. They do not form a continuous 
layer, but they fill small basins at the top of the SGm litho-
facies. Deformations of these deposits may result from 
the uneven subsidence of the basin’s infilling. It is com-
posed of sand and silt, with horizontal alternating laminae 
(Sh(d)). The laminae are not deformed, but the whole series 

Table 3.  All important data for investigated luminescence samples: sample names, depth, radionuclide concentration, overdispersion, dose rate, equiv-
alent dose (CAM model) and final age.

Lab. code Sample ID Sample 
depth(cm)

Th  
(Bq/kg)

U(Bq/kg) K  
(Bq/kg)

Dose rate 
(Gy/ka)

Overdispersion 
(%)

Equivalent 
dose(Gy)

OSL age 
(ka)

GdTL-3144 J_1 100 5.9 ± 0.2 4.7 ± 0.2 195 ± 6 0.91 ± 0.04 10 18.2 ± 0.6 19.9 ± 1.0

GdTL-3145 J_2 205 7.8 ± 0.2 5.7 ± 0.2 198 ± 6 0.93 ± 0.04 10 15.0 ± 0.5 16.1 ± 0.8

GdTL-3146 J_3 175 9.8 ± 0.2 7.9 ± 0.2 249 ± 7 1.14 ± 0.04 14 17.8 ± 0.7 15.6 ± 0.9

GdTL-3147 J_4 105 14.1 ± 0.3 12.2 ± 0.2 351 ± 10 1.59 ± 0.06 5 20.9 ± 0.5 13.1 ± 0.5

GdTL-3148 J_5 230 6.6 ± 0.2 6.2 ± 0.2 185 ± 5 0.88 ± 0.05 5 19.5 ± 0.5 22.1 ± 1.0

GdTL-3149 J_6 215 6.4 ± 0.2 6.4 ± 0.2 196 ± 6 0.91 ± 0.04 18 19.1 ± 1.0 20.9 ± 1.4

GdTL-3150 J_7 200 10.0 ± 0.2 8.1 ± 0.2 224 ± 6 1.07 ± 0.06 7 17.0 ± 0.5 15.8 ± 0.7

GdTL-3151 J_8 203 8.3 ± 0.2 7.4 ± 0.2 210 ± 6 1.00 ± 0.04 9 19.3 ± 0.6 19.2 ± 0.9

GdTL-3152 J_9 160 6.9 ± 0.2 5.8 ± 0.2 205 ± 6 0.94 ± 0.04 5 16.9 ± 0.5 17.9 ± 0.8

GdTL-3153 J_10 140 6.0 ± 0.2 5.1 ± 0.2 189 ± 5 0.88 ± 0.04 8 17.0 ± 0.5 19.3 ± 0.9

GdTL-3154 J_11 210 10.9 ± 0.3 9.3 ± 0.2 337 ± 9 1.42 ± 0.06 10 108.2 ± 3.6 76.1 ± 3.8

GdTL-3155 J_12 165 7.9 ± 0.2 7.0 ± 0.2 216 ± 6 1.01 ± 0.04 13 16.7 ± 0.7 16.4 ± 0.9

GdTL-3156 J_13 130 7.5 ± 0.2 7.6 ± 0.2 200 ± 6 0.98 ± 0.04 12 17.8 ± 0.8 18.1 ± 1.0

GdTL-3157 J_14 90 11.5 ± 0.3 10.1 ± 0.2 285 ± 8 1.34 ± 0.05 13 19.9 ± 0.8 14.8 ± 0.8

GdTL-3357 J_15 190 15.6 ± 0.3 12.8 ± 0.3 380 ± 10 1.67 ± 0.06 12 110.5 ± 3.8 66.1 ± 3.3

GdTL-3358 J_16 210 21.1 ± 0.4 18.5 ± 0.3 437 ± 11 2.00 ± 0.07 13 100.2 ± 4.2 50.0 ± 2.6

GdTL-3359 J_17 187 5.5 ± 0.2 5.0 ± 0.2 177 ± 5 0.83 ± 0.04 8 13.1 ± 0.4 15.8 ± 0.7

GdTL-3360 J_18 140 10.6 ± 0.3 9.8 ± 0.2 229 ± 7 1.16 ± 0.04 20 25.7 ± 1.3 22.0 ± 1.4

GdTL-3361 J_19 135 10.8 ± 0.3 8.8 ± 0.2 284 ± 8 1.28 ± 0.05 18 14.3 ± 0.8 11.0 ± 1.0

GdTL-3362 J_20 145 13.2 ± 0.3 12.0 ± 0.3 271 ± 8 1.33 ± 0.05 16 22.8 ± 1.0 17.2 ± 0.9

GdTL-3363 J_21 125 12.0 ± 0.3 10.2 ± 0.2 272 ± 7 1.29 ± 0.05 16 14.6 ± 0.7 11.2 ± 0.6

GdTL-3364 J_22 170 6.1 ± 0.2 5.3 ± 0.2 187 ± 6 0.87 ± 0.04 22 6.7 ± 0.4 7.6 ± 0.5

GdTL-3365 J_23 100 6.4 ± 0.2 6.2 ± 0.2 190 ± 6 0.93 ± 0.04 8 10.4 ± 0.3 11.5 ± 0.5

GdTL-3366 J_24 90 6.3 ± 0.2 5.42 ± 0.2 181 ± 5 0.89 ± 0.04 20 11.3 ± 0.6 12.6 ± 0.8

GdTL-3367 J_25 80 21.3 ± 0.5 19.2 ± 0.3 409 ± 11 1.98 ± 0.07 10 28.1 ± 0.9 14.1 ± 0.6

CAM, central age model; OSL, optically stimulated luminescence.

Table 2. Lithofacies code used in this study.

Code Texture

G Gravel

S Sand

F Silt

C Organic matter

Code Structure

d Deformed

m Massive

h Horizontal
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is co-shaped to a basin formed at the top of the underlying 
deposits (sections I, IIIa, Fig. 2). Laminae of coarse silt and 
fine and medium-grained sand prevails. The content of aeo-
lian grains (RM) is varied, with most samples exhibiting a 
large share of them, especially in the poorly sorted layers 
composed of fine sand and silt. These deposits also contain 
a large share of mediate (M) and cracked grains (C) (J_1, 
J_19, Table 1).

The top layer at the marginal zone of the basin is com-
posed of sediments comprising fine-grained sand with an 
admixture of silt (S(F)m) and, in the central part of the 
basin, silt with an admixture of sand (FSm). These deposits 
are massive but deformed, presumably resulting from soil 
processes (sections I, II, III, IV, V, Fig. 2). The quartz grains 
at the bottom of the layer contain strongly aeolized mate-
rial, with the RM content up to 46.6%; in the upper part, it 
decreases to 34–38%. The sum of cracked and untreated 
grains remains above 20% (J_23, J_24, J_25).

The youngest OSL dated deposits were sands (S [struc-
ture unknown]) documented on the very southern edge of 
the basin (Fig. 2) where they occurred in the fissure infill-
ing which, unfortunately, could not be traced as it was 
removed by the excavator. This deposit contained abundant 
aeolian grains (RM), up to 45%.

4.2. Geochronology
The luminescence dating (OSL) helped to establish a 
geochronology of deposits. The 25 samples tested indi-
cate the age from 76.1 ± 3.8 ka to 7.6 ± 0.5 ka (Table 3). 
Unfortunately, deposits were subjected to post-sedimentary 
disturbances (Fig. 2) and it did not allow to construct of 
the age-depth model. All important data for the investi-
gated luminescence samples are presented in the Table 3. 
The results of dating of specific lithofacies with diagrams 
of relative probability density functions for equivalent dose 
distribution are presented in Table 4.

5. Discussion

In the Polish Lowland, there are many fossil basins filled 
with biogenic deposits and mineral coverings which re-
flect their age and origin (e.g., Klatkowa, 1989, 1990, 
1996; Majecka et al., 2019). Generally, deposits from 
closed catchments in central Poland are the source of the 
most complete information about the climate in the Late 
Pleistocene. Based on the results, a lithostratigraphic sub-
division of the Vistulian deposit sequence at the Józefów 
site was made. Our luminescence dating of mineral depos-
its provides a geochronology of the events (Fig. 3).

The oldest lithofacies FSCd, dated at 50.0–76.1 ka 
(GdTL-3358, GdTL-3357, GdTL-3154, Table 2) corre-
sponds to the period from Early Vistulian to the Middle 

Plenivistulian (Helmens, 2014; Marks et al., 2016). In 
regional studies, such a series of sand with silt and organic 
material is correlated with the Early Vistulian (Klatkowa, 
1990, 1996). These results seem too young, but this may be 
due to their rejuvenation due to cryoturbation of sediments. 
Significant enrichment of the top part with aeolized min-
eral deposits proves the occurrence of aeolian processes 
in a cold climate during stadials of the Early Vistulian. 
Based on the OSL dating of this series, the overlying 
organic layer (Cd) could have been deposited during the 
Early Vistulian or the Middle Pleniglacial. The first option 
is more probable since sites with fossil soils and biogenic 
sediments with pleniglacial flora are generally rare in cen-
tral Poland (Mamakowa, 1989; Tobolski, 1991; Balwierz, 
1996; Granoszewski, 2003). There is a stratigraphic gap in 
central Poland covering the older part of the Plenivistulian, 
e.g. in the sediments of the north-western Uniejów Basin 
(Petera, 2002) or in valleys and closed depressions in the 
Łódź Upland (e.g., Klatkowa, 1996).

On the assumption that the Cd lithofacies was deposited 
at the end of the Early Vistulian (MIS 5a) and the SCd and 
SGm lithofacies were deposited in MIS 2, as indicated by 
OSL dating, a period of about forty to fifty thousand years 
correlates with MIS 4 and 3 (Helmens, 2014; Marks et al., 
2016) but not represented by any deposits in the Józefów 
basin, similarly as in other closed depressions in central 
Poland (Klatkowa, 1996, 1989; Majecka et al., 2019).

The accumulation of the SGm lithofacies at the Józefów 
site is associated with permafrost and the deposition of 
gelifluctional sediments flowing down on a thawing active 
layer. This series is enriched with aeolian sand and it could 
have been blown directly into the basin or deposited on 
slopes and then incorporated into gelifluction deposits. 
The OSL ages of 17.2–22.0 ka (Table 4) indicate that 
these deposits formed concurrently with the Leszno Phase 
(Marks, 2012). At this time, fluvial and aeolian processes 
developed intensively in a periglacial cold climate in the 
extraglacial part of the European Lowland (Huijzer and 
Isarin, 1997; Vandenberghe et al., 1998). The development 
of the Józefów basin was probably not related to fluvial 
processes, but certainly with aeolian and slope processes. 
Furthermore, a scheme of cover sand was adopted, based 
on the type of material and its relation to biogenic sedi-
ments and palaeosoils for the European aeolian sandy for-
mations (Maarleveld, 1960). This scheme is referred to 
based on OSL dating. The Older Cover-sand I is OSL dated 
at 15.4–25.2 ka, but mostly at 20–22 ka in the Netherlands 
(Bateman and van Huissteden, 1999). The lithofacies SGm 
can therefore be correlated time-wise with this level and its 
deformations may have arisen during the flow of succes-
sive gelifluction lobes into the basin that were then trans-
formed by thermokarst processes (Fig. 2). The two datings 
indicate clearly an earlier period than the others, but the 
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correctness of the result may be a subject to secondary reju-
venation through possible bioturbations at the site caused 
by the presence of burrow-forming animals like moles, 
foxes or badgers during the Holocene. These results were 
obtained from the top of the SGm series, which could have 
been subjected to post-depositional displacement closer 
to a topographic surface, even before the FSm lithofacies, 
and thus also exposed to rejuvenation due to exposure to 
daylight.

SCd lithofacies filling a fissure forms different  structures 
which were also very important to determine the periglacial 

events and their age. We did not find convincing evidence 
that they could belong to a polygonal system and so they 
are probably dilatation cracks formed due to the growth of 
a frost mound, the existence of which was proven earlier 
(Dylik, 1967). The infillings contain both well-sorted sand 
with abundant aeolian quartz grains and material from the 
SGm lithofacies that flowed into cracks from the immedi-
ate vicinity. Luminescence ages (Lab. Code: GdTL-3145, 
GdTL-3146, GdTL-3148, GdTL-3149, GdTL-3150, 
GdTL-3151, GdTL-3152, GdTL-3155, GdTL-3359) are 
dispersed from 15.6 ka to 22.1 ka (Tables 2 and 4; Fig. 2), 

Table 4.  Luminescence dating (OSL) results for documented lithofacies, with relative probability density functions for equivalent dose distribution 
(Berger, 2010).
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but samples with a large amount of aeolian material are 
dated to about 22.0 ± 1.4 ka (J_18, Table 1 and Fig. 2) and 
14.8 ± 0.8 (J-14, Table 1 and Fig. 2), which may indicate 
the time of the most harsh conditions and the development 
of the cracks.

The SCd lithofacies were deposited slightly earlier 
or synchronously with the deposition of the SGm series, 
and the gap fillings (dilatation or contraction structures) 
included both wind-provided material, which confirms a 
large share of RM grains or material from the immediate 

Fig 3.  Lithostratigraphical scheme of the Vistulian deposits at the Józefów site with OSL age results in relationship to the Vistulian climatostratigraphy. 
OSL, optically stimulated luminescence.
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surroundings, which could have already constituted the 
lithofacies SGm. The latest results may indicate the rejuve-
nation of the sediments, but a certain biphasic nature in the 
formation of the cracks and their filling cannot be ruled out.

Typically, ice-wedge structures or sand wedges have 
often been described in the Vistulian deposits (Kolstrup, 
1986; Kasse and Vandenberghe, 1998; Murton et al., 2000; 
Petera, 2002; French, 2007). Sand-filled wedges and pat-
terned grounds are often OSL dated from the Late Saalian 
through the Middle Vistulian, but the majority of struc-
tures are dated from 22 ka to 14 ka (Briant et al., 2004; 
Murton and Bateman, 2007; Buylaert et al., 2009). Such a 
large time interval of changing climatic conditions makes 
it impossible to indicate precisely the exact event of wedge 
formation. The thermokarst and collapse of deposits laid 
down on ice were initiated by warming. In the case of the 
Last Glacial Maximum (LGM) ice sheet, this may have 
been either an interphase after the Leszno Phase dated 
at 24 ka or after the Poznań Phase at 19.0 ka (Marks, 
2012) when the warming became more pronounced 
(Dzieduszyńska and Forysiak, 2019). The significance of 
the warming after 16.6 ka for thermokarst development is 
accentuated (Van Vliet-Lanoë et al., 2019) and it can be 
correlated with the ice sheet retreat after the Pomeranian 
Phase (Marks, 2012). Therefore, varied OSL ages for the 
fillings of thermal contraction structures could be reason-
ably expected (Fig. 2).

The lithological features of the lithofacies Sh(d) indi-
cate their deposition in small, water-filled basins and that 
they come from washing of fine material, but the signifi-
cant share of aeolian sand grains suggests cold climate 
conditions. The OSL ages are too divergent (11.0–19.9 ka) 
so it is difficult to specify accurately the time of deposi-
tion (Table 3 and Fig. 3). In areas with aeolian and fluvio-
aeolian deposition in a similar stratigraphic setting, there 
is the Older Cover-sand II (Kasse et al., 2007). According 
to Bateman (2008), this layer was formed at 13.2–17.6 ka, 
with most ages grouped around 15 ka, which is in the Oldest 
Dryas (Vandenberghe et al., 1998; Ammann et al., 2013). 
The emergence of post-depositional deformations could be 
associated with the final thawing of buried ice during the 
warming at the end of the Oldest Dryas and in the Bölling. 
Such situations were documented in buried depressions of 
central Poland, where a segregation ice melting occurred, 
followed by a quick collapse of deposits during the Late 
Vistulian (Goździk and Konecka-Betley, 1992).

The upper lithofacies FSm, lying in the central part of 
the basin, and the slope lithofacies S(F)m are characterised 
by abundant RM grains. Two OSL ages indicate 13.1–14.1 
ka (GdTL-3147, GdTL-3367) for sandy silt, which cor-
respond to the Bölling–Alleröd and 11.5–12.6 ka (GdTL-
3365, GdTL-3366, Table 3) for sandy slope deposits, 
which allows these sediments to be associated with the cold 

climate of the Younger Dryas (Vandenberghe et al., 2004; 
Dzieduszyńska and Forysiak, 2019). During this last cold 
period of the Vistulian, a discontinuous permafrost may 
also have been reactivated in north-western and central 
Europe (Petera-Zganiacz and Dzieduszyńska, 2017). In the 
European Lowland, deposition of aeolian sediments termi-
nates with the Younger Cover-sand II. The fissure structure 
documented in section IVb on the southern slope of the 
basin is filled with well-sorted sand with a large propor-
tion of RM-type quartz grains. Its age of 7.6 ± 0.5 ka (J-22, 
Table 3 and Fig. 2) is, like its origin, difficult to interpret 
because it corresponds with the Atlantic Period of the 
Holocene. It is possible that this is the sediment that filled 
the fissure, as a result of slope processes, immediately after 
its formation. Currently, the origin of this fissure cannot be 
explained. The age of 7.6 ka is highly underestimated and 
it is difficult to accept it from the paleogeographical point 
of view. This underestimation can be justified by possible 
bioturbations in this series.

Despite significant differences in the dating of sam-
ples collected from the same series, it seems that the OSL 
results confirm the temporal distribution of the deposi-
tions of successive lithofacies. It should be emphasised 
that dynamics of post-depositional disturbances were very 
high in the studied formations, so the precise matching of 
material packages to subsequent lithofacies has become 
problematic. Despite this high variability of structures, the 
lithostratigraphic arrangement of the series is generally 
confirmed by the OSL dating, which shows that, despite 
the high variability of sediments and the presence of post-
sedimentary deformations, it is possible to reconstruct the 
age and sequence of events recorded in the sediments at 
Józefów.

6. Conclusions

The site at Józefów is very important for the regional 
stratigraphy of the Vistulian in the European Lowland, 
mainly due to the well-documented depositional succes-
sion of mineral deposits and their chronology. First of all, 
the depositional processes are dated here, so it supports 
the paleoclimatic considerations for the Vistulian. This is 
a period with vast climatical diversification and so dif-
ficult to unambiguously define due to different proxies 
obtained from different sedimentary environments. These 
are mostly environments that bear the hallmarks of perigla-
cial processes, i.e. certain post-sedimentary disturbances. 
Therefore, another well-documented site is very important 
here to determine a complementary set of climatic condi-
tions for the region.

The sequence of sediments begins with lacustrine sedi-
ments deposited during the Early Vistulian with traces of 
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cool intervals recorded in aeolian material delivery to the 
basin. The deformation structures are a record of cryogenic 
processes in cold climate conditions. A lack of deposits 
corresponds to MIS 4 and 3 and may indicate that erosion 
processes dominated here, but they have not been recorded 
in the sediments.

The accumulation of the gelifluction sandy-gravel 
series enriched with aeolian sand is associated with flowing 
down a thawed active layer in permafrost conditions dur-
ing the LGM (Fig. 3). During the harshest climatic condi-
tions, fissures developed and were successively filled with 
the inflowing gelifluction material, a thickness of which 
was getting increased as the supply of aeolian material 
increased in the cooling intervals (Fig. 3). During a degra-
dation of the ice lens, small but numerous depressions were 
formed in the already buried basin, in which the sandy-silt 
deposit was probably the cause of their collapse and the 

deformation of the older series lying below. It is difficult 
to date unambiguously these processes as they were associ-
ated with increased humidity and thus degradation of per-
mafrost, but the content of aeolian material indicates still 
there are intensive aeolian processes in the region. The top 
series filling the depression proves that strong aeolian pro-
cesses occurred in the region during the final phase of the 
Visulian (Older Dryas, Younger Dryas).

Such a sedimentary record is a testimony to the ther-
mal conditions of the Vistulian in the extraglacial zone of 
the Vistulian ice sheet. The gaps in the sedimentary record 
of the Lower and Middle Plenivistulian are specific to the 
region and also reflect the nature of the conditions and pro-
cesses at that time.

The presented results were obtained with the support 
of the Polish National Science Centre, contract number: 
DEC-2014/15/B/ST10/03809.
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