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Abstract 
Late Quaternary landscape evolution in tropical environments, such as Indonesia, remains poorly constrained due 
to limited prior studies and mineral properties that are challenging for luminescence dating. In this study, single- 
and multi-grain luminescence measurements of quartz and K-feldspar were explored for fill terrace deposits at the 
Kampar Kanan River, Indonesia. Our objective is to develop a chrono-stratigraphic framework that allows the re-
construction of late Quaternary fluvial morpho-dynamics, including climatic change. Quartz measurements were 
made using blue and green stimulation and single-aliquot regenerative dose (SAR) and double SAR protocols. How-
ever, as none of the quartz signals were fast component-dominated, they were not used for dating. Infrared-stim-
ulated luminescence of multiple grains of K-feldspar at 50°C (IR50) and post-infrared infrared-stimulated lumines-
cence at 225°C (pIR50IRSL225) yielded sufficiently bright signal intensities for dating, and ages were calculated using 
either the average dose (ADM) or minimum age model (MAM). The luminescence chronology based on fading 
corrected pIR50IRSL225 data yields ages from Marine Isotope Stage (MIS) 6 or earlier to MIS 1. The chrono-stratigra-
phy indicates that the river was likely aggradational during climate transitions from wet to dry with the deposition 
of more gravelly material, and erosional during colder periods when overbank deposition of fines may have been 
coincident with increased vertical river erosion due to a stronger monsoon. 
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1. Introduction 

Fluvial archives are key for studying paleo-environ-

mental changes linked to Quaternary climatic fluctuations 

(e.g., Macklin et al., 2012; Bridgland and Westaway, 

2008). During the Quaternary, large-scale climate forcing 

resulted in glacials and interglacials, which are character-

ized by cold and warm climates in the high- and mid-lati-

tutes, and generally drier and wetter conditions in the low 

latitutes (Macklin et al., 2012). Tropical climates are com-

monly associated with equatorial convective rainfall and 

monsoon-influenced precipitation, giving rise to mostly 

wet conditions punctuated by short dry seasons (Syvitski 

et al., 2014). The tropical rivers of Southeast Asia and In-

dia are renowned for widespread and frequent flooding, 

which is related to significant discharge during wet sea-

sons (Heitmuller and Hudson, 2009; Mishra and Sinha, 

2020). Seasonal precipitation changes, reflected in annual 

rainfall totals are known to have changed fluvial activity 

during glacial periods in tropical lowland areas such as In-

donesia (Verstappen, 1980; Thorp and Thomas, 1992; 

Thomas, 2008). However, the relationships between such 

climatic changes and direct (discharge-related) as well as 

indirect (sediment supply and runoff) impacts on fluvial 

morphodynamics remain poorly constrained, especially in 
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tropical environments during the Pleistocene–Holocene 

transition (Thomas, 2008). 

Tropical rivers, particularly those draining tectonically 

active mountain belts, transport significant quantities of 

material that may be deposited on floodplains, and those 

deposits are excellent geo-archives for reconstructing en-

vironmental change (Sinha and Latrubesse, 2020). How-

ever, the fluvial dynamics of tropical rivers are challenging 

to constrain due to their complex depositional histories that 

reflect non-stationary environmental forcing and associ-

ated autogenic responses (Sinha et al., 2012). Understand-

ing the timing and dynamics of episodic changes in tropi-

cal floodplains has been a long-term challenge in fluvial 

geomorphology (Knox, 2006), not least because of inter-

actions between discharge, slope, climate, and vegetation 

(e.g., Stanistreet et al., 1993) in controlling the river chan-

nel forms, patterns and depositional/erosion histories.  

The focus of this paper is the Kampar Kanan river 

catchment in Sumatra Island, Indonesia. This Kampar 

river is not only one of Indonesia’s most important ones, it 

is also located in a climate zone highly sensitive to climate 

events and changes (e.g., El Niño Southern Oscillation 

(ENSO), Monsoon) (Kausarian et al., 2024). The aim of 

the wider project is to understand the direct and indirect 

effects of late Quaternary climate change upon the fluvial 

dynamics of the Kampar river. To do this, a robust chro-

nology is essential to set Quaternary fluvial dynamics in 

relation to environmental change (e.g., Riebe et al., 2000; 

Cunha et al., 2008). However, establishing reliable 

chronostratigraphies of fluvial deposits is generally chal-

lenging given the heterogeneous nature of river deposits 

and long time-scales required for fluvial response such as 

for example terrace formations (Rixhon et al., 2017). The 

timing of major fluvial responses in Indonesia is remarka-

bly understudied. Only a few studies exist that report quan-

titative ages due to the difficulties of dating ancient Qua-

ternary deposits in tropical environments. Across the Indo-

nesian archipelago, (Kaharudin et al., 2020) reported radi-

ocarbon ages related to archaeological sites, including 

caves and rock shelters. However, radiocarbon dating in 

humid regions can be complicated due to oxidation of or-

ganic matter and reworking of old carbon in fluvial sedi-

ments (Blong and Gillespie, 1978; Stanley, 2000; Wood et 

al., 2008). Consequently, Late Pleistocene radiocarbon 

dates in Indonesia are usually determined from shells 

(Louys et al., 2017; Morley, 2017). Alternative dating 

techniques such as optical stimulated luminescence (OSL) 

dating of sediment which and U-series dating of bone-

bearing and speleothems, combined with electron spin res-

onance (ESR) dating on human and faunal teeth, have been 

applied to archaeological sites in West Sumatra, Indonesia 

(Westaway et al., 2017; Kaharudin et al., 2020), although 

such studies are limited in number. 

Luminescence dating represents a potentially excellent 

dating tool for constraining the timing of fluvial sediment 

deposition (Rittenour, 2008). However, Indonesia is 

known to be a challenging location for the application of 

luminescence dating (Westaway and Roberts, 2006) and 

previous studies for sites at Timor, Flores, Java and Sula-

wesi have found that the blue-stimulated UV-emission of 

quartz lacks a fast component and has an unstable medium 

component that can result in age underestimation (Westa-

way, 2009). Nonetheless, single-grain and single-aliquot 

quartz (Westaway, 2009) and K-feldspar analyses (Westa-

way, 2009; Sutikna et al., 2016; Van Den Bergh et al., 

2016; Sontag-González et al., 2021; O’Gorman et al., 

2021) from the same locations have yielded dates com-

mensurate with independent age controls. More recent 

work in the Padang highlands, West Sumatra, presented 

promising K-feldspar luminescence dates (Westaway et al., 

2017; Duval et al., 2021). 

Against this background, this study aims (i) to develop 

a chronology of the Kampar river deposits using different 

luminescence dating techniques; and (ii) to determine over 

the late the timing of aggradation and incision phases in 

response to changing climate. Given the difficulties of us-

ing luminescence dating in Indonesia and in tropical envi-

ronments in general, we study in detail OSL and post-in-

frared stimulated luminescence (pIR-IRSL) signals of 

quartz and K-feldspar minerals, respectively, with the goal 

to establish a luminescence measurement protocol for da-

ting tropical (river) deposits.  

2. Study Area 

The Kampar Kanan River with a catchment size of 

24,550 km2 is located in the centre of Sumatra Island, In-

donesia and flows from its headwaters in the Barisan 

mountains of West Sumatra to its outlet on the island’s 

eastern coast, into Malacca Strait (Fig. 1a). It has a length 

of ~580 km and is one of the largest rivers in Sumatra with 

an appoximate mean annual discharge of 600 m3 s-1 (Wisha 

et al., 2018; Wisha et al., 2022), and is prone to periodic 

flooding due to its typical meandering morphology (Fig. 

1b). The study area is located in the Indo-Pacific Warm 

Pool (IPWP) oceanic zone and is influenced by the East 

Asian monsoon and the ENSO (Linsley et al., 2010). 

Based on rainfall data from 2018 to 2023, the Kampar 

Kanan River catchment experiences average precipitation 

of between 130 and 560 mm month-1 (Kausarian et al., 

2024).  

This river is also part of the Central Sumatra Basin 

(CSB) that during the Middle Miocene up to recent times 

underwent a compressional phase, involving WSW-di-

rected thrusting and reverse faulting along reactivated 

NNW-striking wrench faults, SSW-verging monoclinal 

flexuring above NW-WNW basement breaks, and 

transtensional rifting along N-NNE-trending elements 

(Hendrick and Aulia, 1993; Yuskar et al., 2017). The up-

per catchment area of the Kampar Kanan River is charac-

terized by Tertiary rocks that have undergone tectonic up-

lift (Koesoemadinata and Matasak, 1981; Putra and Cho-

anji, 2016; Choanji, 2019) and the sediments forming the 

terraces of the Kampar Kanan River are sourced from the   
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Fig. 1. Research area at the Kampar Kanan River, Riau Province in Sumatra Island – Indonesia. Sample locations are indicated with their names. (a) 
Sumatra Island – Indonesia, the red dot shows the research location. (b) Kampar Kanan River and surroundings (modified from DEMNAS 8 m 
resolution), the red dot shows St.01 and 01a. (c) The terraces and site location of St. 01 and 01a. (d) and (e) show a zoom-in on site 01 and 01a, 
red dots show the luminescence sampling locations. 
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Bahorok Formation (Pub; metasediment rocks), Pematang 

Formation (Tlpe; red and mottled mudstones, breccio-con-

glomeratic, conglomeratic sandstones), Sihapas Formation 

(Tms; conglomeratic sandstones and siltstones), and Telisa 

Formation (Tmt; siltstones, sandstones, mudstones), and 

Petani Formation (Tup; mudstones, siltstones and sand-

stones) (Clarke et al., 1982; Choanji, 2019, 2017). Based 

on the regional geological map of the sheet Pekanbaru, the 

sedimentary deposits of the Kampar Kanan River are cat-

egorised as the Minas Formation (Qpmi), Older Alluvium 

(Qp) and Younger Alluvium (Qh) (Clarke et al., 1982). 

Gravels, pebble spreads, sands and clays make up the 

Qpmi Formation (Clarke et al., 1982). The Qp is charac-

terized by gravels, sands, clays, and organic materials 

(Clarke et al., 1982; Yuskar, 2016), likely deposited in the 

Pleistocene to Holocene (Clarke et al., 1982), whereas the 

Qh deposits consist of gravels, sands and clays that were 

deposited during the Holocene (Clarke et al., 1982; Yuskar, 

2016; Yuskar et al., 2018; Revanda et al., 2019).  

Our study area is located in the upper reaches of the 

Kampar Kanan River (Fig. 1). One representative fluvial 

sedimentary sequence, located approximately 32 km from 

the source and approximately 1.2 km south of modern 

channel (Fig. 1a–1e), was chosen to explore the lumines-

cence properties of river deposits and to develop a lumi-

nescence measurement protocol for dating tropical river 

purposes. A ~13 m-thick composite sediment section (i.e., 

from two correlable fluvial sections based on their sedi-

mentology, namely St. 01 and St. 01a; Fig. 2) were inves-

tigated that can be subdivided into five main units (from 

bottom to top), see Fig. 1c-1e. Unit 1 (U1) is characterized 

by massive sediment with yellowish grey-weathered and 

grey-fresh colours, massive rounded to sub-rounded cob-

bles and gravels, supported in a matrix of medium to 

coarse sand with silica cement. Unit 2 (U2) shows brown-

ish-yellow weathered colour and yellow fresh colour and 

consists of sub-rounded to rounded pebbles and coarse 

sand matrix cemented with silica. The fining-upward sed-

iment of unit 3 (U3) contained sediment with reddish grey-

weathered and yellowish brown-fresh colours, sub-

rounded to rounded granule and pebble grains, grains sup-

ported into medium – fine sand and a silica cement. Unit 4 

(U4) is identified by fining-upward reddish grey-

weathered and blackish yellow-fresh colours with pebbles 

in fine to medium sand, matrix-supported and silica-ce-

mented. Unit 5 (U5) is covered by soil. This unit is desig-

nated by yellowish-red weathered and yellowish-brown 

fresh colours of fine to medium sand with roots, being ma-

trix supported with silica cement.  

3. Methodology 

3.1. Sampling, sample preparation and characterization 
In total, seven luminescence samples were collected 

from the different stratigraphic units (U1-U5): Samples L1 

(8.4 m b.s.), L2 (7.0 m b.s.), L3 (5.5 m b.s.), L4 (3.0 m 

b.s.), and L5 (1.5 m b.s.) were collected from U1, U2, U3, 

U4, and U5, respectively, from site St.01 (49 m a.s.l.), 

whilst samples L6 (1.6 m b.s.) and L7 (2.4 m b.s.) were 

additionally taken from U5 from site St.01a (55 m a.s.l.) 

(Table 1). Luminescence samples were collected by ham-

mering cylindrical steel tubes (25 cm long, 6 cm in diam-

eter) into the freshly cleaned sections. The surrounding 

sediment was collected for measurement of the dose rate 

which was done using high-resolution gamma-spectrome-

try (HRGS) at the luminescence laboratory at the Univer-

sity of Lausanne (UNIL, Switzerland).  

All luminescence samples were opened under subdued 

red-light conditions at UNIL. After drying at 40°C, sam-

ples were sieved to obtain the coarse-grained fraction (90–

250 µm) and then treated with hydrochloric acid (HCl, 

10%) to remove carbonates and hydrogen peroxide (H2O2, 

35%) to remove organic matter. Density separation using 

sodium polytungstate was conducted to extract the quartz-

rich (2.62–2.70 g cm-3) and K-feldspar-rich fraction (<2.58 

g cm-3). The resulting quartz and K-feldspar fractions were 

sieved to 180–212 µm, whilst we used the 100–250 µm 

grain size fraction for the K-feldspar extract of samples L6 

and L7 due to an insufficient number of K-feldspar grains 

in 180–212 μm grain size range. The quartz fraction was 

etched with hydrofluoric acid (HF, 40%) for 40 min plus a 

final HCl (10%) wash. No HF treatment was used for the 

K-feldspar fraction (Duller, 1992).  

We carried out additional analyses to check the purity 

of our quartz and K-feldspar samples. Scanning Electron 

Table 1. Summary of dose rate measurements. Secular equilibrium in the 238U decay chain has been observed. 

Sample  
code 

Radioelement concentrations Depth of  
sampling (m) 

Thickness of  
layer (m) 

Water  
content (wt.%) 

Environmental  
dose rate (Gy ka-1) U (µg g-1) Th (µg g-1) K (%) 

L7  1.7 ± 0.1  7.8 ± 0.5  0.18 ± 0.03 1.6 1.6 13.6  1.71 ± 0.19 

L6  1.8 ± 0.2  7.9 ± 0.5  0.11 ± 0.02 2.4 2.4 11.3  1.74 ± 0.19 

L5  2.2 ± 0.3  11.2 ± 1.2  0.18 ± 0.02 1.5 1.5 13.8  1.88 ± 0.08 

L4  1.2 ± 0.1  5.5 ± 0.2  0.07 ± 0.01 3.0 3.5 9.3  1.42 ± 0.06 

L3  1.5 ± 0.1  7.5 ± 0.5  0.14 ± 0.02 5.5 6.7 15.5  1.41 ± 0.06 

L2  2.2 ± 0.2  11.9 ± 0.5  0.79 ± 0.07 7.0 8.6 21.2  2.17 ± 0.08 

L1  0.7 ± 0.1  3.5 ± 0.2  0.26 ± 0.03 8.4 10.4 6.7  1.22 ± 0.05 
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Microscopy (SEM) analyses were done to check for the 

contamination of quartz grains with other minerals. The 

number of K-feldspar grains in the <2.58 g cm-3 density 

fraction was quantified using a binocular microscope and 

Raman spectroscopy. Raman spectroscopy is used to iden-

tity minerals and their polymorphic forms (see Table S1 

for instrument details and results). In addition, an X-Ray 

Fluorescence (XRF) attachment to the Risø TL/OSL 

reader allowed us to identify the specific mineralogy of 

multi-grain (MG) K-feldspar aliquots (Qz = SiO2, Ab = 

NaAlSi3O8, An = CaAl2Si2O8, Or = KAlSi3O8) with an es-

timated analytical precision of 7% (Guralnik et al., 2015); 

see Fig. S1 and Table S2 for full XRF results.  

3.2. Luminescence measurements and De determination 
Luminescence measurements were performed using 

two automated Risø TL/OSL-DA-20 readers equipped 

with 90Sr/90Y beta sources with dose rates of ~0.10 Gy s-1 

and ~0.19 Gy s-1, respectively (calibrated with Risø cali-

bration quartz batch 200; Hansen et al., 2015; Autzen et 

al., 2022). MG analyses were carried out using small ali-

quots (2 and 3 mm in diameter). The 180–212 μm (L1 to 

L5 samples) and 100–250 μm (L6 and L7 samples) grain 

size fractions were loaded into 300 μm diameter hole sin-

gle-grain discs for single-grain (SG) measurements. Visual 

control showed that occurrences of multiple grains in one 

hole were infrequent (<1%). 

 

Fig. 2. Log of St.01 and St.01a, including all units and sediment facies (classification by Krüger and Kjær, 1999 as modified from Miall, 1985). Sample 
numbers and the resultant luminescence ages (fading-corrected pIR50IRSL225 MAM ages are displayed for L1 to L7 with the exception of L6 for 
which the fading-corrected pIR50IRSL225 ADM age is given; see Table 2). 
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Quartz luminescence measurements were made fol-

lowing a single-aliquot regenerative (SAR) dose protocol 

(Murray and Wintle, 2000). Quartz luminescence emis-

sions were detected through a 7.5 mm Hoya U340 filter. 

Previous studies have highlighed the difficulties of isolat-

ing the fast component and feldspar contamination of 

quartz samples from Indonesia (Westaway, 2009). Conse-

quently, we tested different measurement approaches in-

cluding blue (Murray and Wintle, 2000) and green light 

stimulation (Bailey et al., 2015), and a double SAR proto-

col where infrared (IR) stimulation preceeds the blue or 

green stimulation (Banerjee et al., 2001; Roberts and Win-

tle, 2001; Zhang and Zhou, 2007). An IR depletion test 

with an acceptance threshold of 10% was included in the 

final SAR cycle to screen for feldspar contamination 

(Duller, 2003); see Table S3 for details of the measure-

ment protocols. Representatitive signals of different ali-

quots measured using blue and green stimulation were 

used for continuous wave (CW)- and linearly modulated 

(LM)-OSL deconvolution analyses to check for the fast 

component contribution (see further details in the supple-

ment). 

Feldspar minerals were measured using a pIR-IRSL 

(Thomsen et al., 2008; Buylaert et al., 2009) protocol with 

a first stimulation at 50°C (180 s) and a second stimulation 

at 225°C (180 s) after a preheat of 250°C (60 s). At the end 

of each pIR50IRSL225 measurement cycle, a high-tempera-

ture IR wash at 290°C for 100 s was used (Table S3). IRSL 

emissions were detected using a blue filter pack (3 mm 

Schott BG3 and 3 mm Schott BG39 filters). The IR power 

delivered to the sample position was 90% of the maximum 

power (~140 mW cm-2). Regenerative doses between 46 

and 684 Gy were used for dose-response curve construc-

tion, and the test dose was 57 Gy. Six further aliquots of 

samples L1, L4, L5 and L6 were bleached using a solar 

simulator (Hönle UVACube400) for 24 h. From these 

samples, three aliquots were used for a dose recovery test 

following a laboratory dose of 84 Gy, the three remaining 

aliquots were measured to determine the residual dose. We 

applied signal integration limits of the first 8 s and back-

ground integration of the final 27 s for all signals.  

Anomalous fading experiments were carried out on 

three previously measured aliquots for each sample. Sam-

ples were irradiated with a given dose of 110 Gy and pre-

heated prior to storage (Auclair et al., 2003), the test dose 

was 55 Gy and delay times were 1.7, 3.3, 6.7, and 13.3 h. 

The initial delay time measurement was repeated. We cal-

culated fading rates using the analyse_FadingMeas-

urement() function 0.1.21 in the R package ‘Lumines-

cence’ (v0.9.22; Kreutzer et al., 2012; Kreutzer and Burow, 

2023). Fading rates were normalised to a delay time of 2 

days (g2days; Huntley and Lamothe, 2001) and the average 

fading rate of the three aliquots was used for fading cor-

rection using the approach of Huntley (2006) and Kars et 

al. (2008).  

For quartz and feldspar measurements, the following 

acceptance criteria were adopted: recycling ratio within 

10% of unity and recuperation below 5% (Murray and 

Wintle, 2000); signal >3σ above background; and De < 2D0. 

In the case of K-feldspar samples, De < 2D0 is not an ef-

fective screening criterion where no anomalous fading cor-

rection has been made (King et al., 2018). Therefore, we 

tested whether our feldspar samples were in field satura-

tion by comparing the natural level of trap filling (n/N) 

with that predicted for athermal steady-state (n/N)ss using 

the calc_Huntley2006()function 0.4.1 in the R 

package ‘Luminescence’ (v0.9.22 ; King and Burow, 

2023). We used a single-saturating exponential fit (1EXP, 

after Kars et al., 2008). Depending on the shape of the De 

distribution, we applied either the minimum age model 

(MAM) of Galbraith et al. (1999) or the average dose 

model (ADM; Guérin et al., 2017) to calculate ages for 

samples considered to have been well bleached or partially 

bleached prior to burial (Smedley et al., 2019). In the 

MAM, sigma-b (𝜎b) is the excess De value dispersion that 

would be anticipated if a sample had been well-bleached 

(Cunningham and Wallinga, 2012). The 𝜎b of samples 

from well-bleached settings has been found to cover a 

range of values from 0.2 to 0.4 (Smedley et al., 2019). As 

a modern analogue is not available for the samples from 

sites St.01 and St.01a, we selected a 𝜎b value of 0.3 for the 

MAM. Age modelling using the MAM or ADM was un-

dertaken using the using the calc_MinDose()func-

tions 0.4.4 (Burrow, 2023) and calc_AverageDose() 

functions 0.1.5 (Christophe et al., 2023) in the R package 

‘Luminescence’ (v0.9.22; Kreutzer et al., 2023). 

3.3. Dose rate determination 
Dose rate samples were milled and sealed in beakers 

for at least four weeks prior to measurement using HRGS. 

The environmental dose rate of the sample was calculated 

using DRAC (v1.2; Durcan et al., 2015) using the conver-

sion factors of Guérin et al. (2011), and the beta grain size 

attenuation factors of Guérin et al. (2012). An alpha effi-

ciency value of 0.15 ± 0.05 was assumed for feldspar 

(Balescu and Lamothe, 1994). The cosmic dose rate was 

assessed following Prescott and Hutton (1994). We used 

an average internal K content based of 8.43% on XRF 

measurements from all samples (Table S2). The water 

content was calculated as the percentage of the weight of 

water (wet mass – dry mass) divided by the dry sediment 

mass for all samples (Durcan et al., 2015).  

4. Results 

4.1. Quartz OSL signal properties 
Scanning Electron Microscopy – Energy Dispersive  

X-ray Spectroscopy (SEM-EDS) analyses of the samples 

show no feldspar contamination in the quartz extracts 

(based on morphology, colour and composition). However, 

blue stimulated quartz luminescence signals were not fast 

component-dominated (Fig. S2 and Fig. S3). Green LED 

stimulation yielded similar results and a measurable fast 
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component could not be isolated for dating the Kampar 

Kanan River samples. Furthermore, multiple aliquots 

failed the IR depletion test. Double SAR measurements 

and a second HF treatment were done to try to remove the 

IR-sensitive signal; however, this was also unsuccessful 

(continued IR sensitivity), and no fast component could be 

isolated from the post-IR blue stimulated signal. Examples 

of signal decay curves using different measurement proto-

cols are shown in Fig. 3. SG quartz analyses yielded an 

acceptance rate of <1% which meant that they were im-

practical. As it was not possible to isolate a fast component 

or non-IR responsive signal from the quartz extracts, meas-

urements on this mineral fraction were discontinued. 

4.2. K-feldspar pIR50IRSL225  

4.2.1. Signal properties and De determination 
Raman spectroscopy of MG K-feldspar extracts of 

samples L1, L3 and L6 indicate that only 1% (200 grains 

analysed, L1) to 5% (75 grains analysed, L3 and L6) of 

grains are K-feldspar (see Table S1). This implies that for 

MG aliquots of K-feldspar, only a few grains contribute to 

the luminescence signal. The total number of grains on a 3 

mm diameter aliquot was estimated for the 180–212 µm 

(samples L1 to L5) and 100–250 µm (samples L6 to L7) 

grain size ranges based on manual counting and the func-

tion calc_AliquotSize()functions 0.31 in the R 

package ‘Luminescence’ (v1.01; Burow, 2025). Each ali-

quot consists of 135–200 and 200–300 grains, showing 

that only 1–5 grains on a MG aliquot contribute to the 

measured luminescence signal, and probably only a single 

grain for sample L1. Overall, K-feldspar MG analyses 

yielded sufficient IRSL signal intensities for De measure-

ment (i.e., 102–103 cts/0.77 s; Fig. 4 and Fig. S4).  

The XRF data are consistent with the Raman results 

and show that only 1–5% of the grains in a MG K-feldspar 

aliquot are feldspar (see Table S2). Assuming a 12.5% K 

content for K-feldspar (Huntley and Baril, 1997), we esti-

mated the effective K content of the measured feldspar 

grains based on the relative proportions of Na-feldspar and 

K-feldspar, as obtained from the XRF analyses (see Table 

S2 and Fig. S1). The results show that the average K con-

tent for the K-feldspar extract of all samples is ~8%, a 

value we applied to estimate the environmental dose rate. 

In total, 48 aliquots of all samples (L1 to L7 samples) were 

measured for De evaluation, with the exception of sample 

L2 for which we measured 32 aliquots due to a lack of ma-

terial. The aliquot acceptance rate ranged from 40 to 95% 

for the IR50 signal and from 20 to 90% for pIR50IRSL225 

signals. The main reason for aliquot rejection was poor re-

cycling and high recuperation. Dose-response curves were 

best fitted using a single saturating exponential function 

(Fig. 4 and Fig. S4).  

Mean residual doses from three aliquots each of sam-

ples L1, L4, L5 and L6 span the range of ~0.7–1.9 Gy 

(IR50) and ~0.8–4.4 Gy (pIR50IRSL225) and represent <1% 

of the natural single-aliquot pIR50IRSL225 De values. Re-

sidual subtracted dose recovery ratios were within 10–15% 

of unity for the IR50 and pIR50IRSL225 signals, indicating 

that the selected measurement protocol is appropriate (see 

Fig. 5).  

De distributions of samples L1 to L7 yielded significant 

scatter and an asymmetric distribution of De values (Fig. 6 

and Fig S5) with overdispersion (OD) values between 21 

and 92% (Table 2). The IR50 and the pIR50IRSL225 signals 

 

Fig. 3. Quartz OSL signal decay curves for samples L1 and L3 following 
stimulation with blue, green or post-IR blue light in the course of 
SAR and double SAR protocols. Aliquot sizes are indicated, and 
one measurement is followed by two HF treatments (2 x HF). The 
main plot presents the OSL signal normalized to unity, and the in-
set plot displays the measured OSL signal. 

 

 

Fig. 4. MG K-feldspar pIR50IRSL225 decay curve and dose-response curve 
(DRC) of sample L3. The red circle denotes the sensitivity-cor-
rected natural pIR50IRSL225 signal (Ln/Tn), whilst the black circles 
show the regenerative (REG) dose points (Lx/Tx). 
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show similar dose distribution patterns. Most of the sam-

ples are characterized by positive skewness (Fig. 6) with 

the exception of the IR50 signal of L3 and the pIR50IRSL225 

signals of L2 and L4 that show weak negative skewness 

(Fig. 6 and Fig. S5).  

We explored the effect of OD on sample ages by com-

puting MAM De values using 𝜎b values of between 0.2 and 

0.4 (Smedley et al., 2019). De results were broadly con-

sistent irrespective of the 𝜎b value used, but increase with 

increasing 𝜎b, see Table S4. Sample L6 (pIR50IRSL225) has 

an OD of 21%, indicative of complete bleaching (e.g. Choi 

et al., 2024) and thus, the ADM was used to determine the 

pIR50IRSL225 age of this sample. Ages of all samples were 

also computed using the ADM for comparative purposes.  

For the IR50 signal, fading-uncorrected De values range 

between 8.9 ± 0.8 Gy and 361.4 ± 28.2 Gy (ADM) com-

pared to 4.8 ± 0.9 Gy and 345.0 ± 48.5 Gy (MAM), and 

for the pIR50IRSL225 signal, fading-uncorrected De values 

range between 27.8 ± 0.9 Gy and 478.1 ± 65.7 Gy (ADM) 

compared to 18.0 ± 2.6 Gy and 307.7 ± 87.8 Gy (MAM), 

see Table 2. The ADM yielded systematically higher De 

values compared to those calculated using the MAM. 

4.2.2. Fading rates 
Measurement of the g-values for these samples was 

challenging due to their poor luminescence brightness and 

high heterogeneity in g-values between aliquots. We tested 

different maximum delay times (13.33 and 26.67 h), which 

did not change the results. The results of the fading tests 

are summarized in Table 2 and Fig. S6. Mean g2days-values 

ranged from 0.87 ± 0.71 to 7.87 ± 3.22 %/decade for the 

IR50 signal whereas fading rates for the pIR50IRSL225 were 

lower with g2days-values varying between 0.35 ± 0.70 and 

3.99 ± 1.49 %/decade. Comparing the natural signals (n/N)   

 

Fig. 5. Residual-subtracted dose recovery ratio results for MG K-feldspar 
of samples L1, L4, L5 and L6. The solid line indicates unity, whilst 
the dashed lines indicate 15% deviation from unity. 

 

 

Fig. 6. Kernal density estimate (Dietze, 2023) plots of equivalent dose (De) 
distributions of the IR50 (black dots) and pIR50 IRSL225 (red dots) 
signals for samples L2 (a), L3 (b) and L6 (c). 
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with those calculated for athermal steady-state (n/N)ss 

shows that for sample L1 the IR50 and pIR50IRSL225 and for 

sample L2 the IR50 signal are close to and already in field 

saturation (>86% of the calculated (n/N)ss) (see Table 2 

and Fig. S7).  

4.3. Dose rate and age results 
Results of the dose rate calculation are given in Table 1. 

Analysis of the 238U decay chain (i.e. activity of isotopes 
226Ra, 214Pb and 214Bi) indicates secular equilibrium. Inves-

tigation of the sensitivity of the environmental dose rate to 

the water content indicates an age change of 7–10% for a 

change in water content of 5–20%, hence the ages do not 

vary beyond their uncertainties.  

We explored the environmental dose rate variability 

with different internal K-contents (12.5%, 8%, 5% and 

2%) using DRAC (v1.2; Durcan et al., 2015). The results 

show that ages increase by ~3% for every 1% reduction in 

the internal K-content, see Table S3.  

Fading-corrected IR50 ages range between 9 ± 3 ka and 

237 ± 25 ka (ADM) compared to 7 ± 3 and 197 ± 61 ka 

(MAM), and for the pIR50IRSL225 signal from 27 ± 9 to 

210 ± 36 ka (ADM) compared to 14 ± 5 and 147 ± 39 ka 

(MAM) (Table 2). The ADM ages are systematically older 

compared to MAM ages (Fig. 7 and Fig. S8). Fading-cor-

rected IR50 MAM ages are stratigraphically inconsistent 

(although neighbouring ages overlap within uncertainty), 

whereas the ADM ages are more consistent. In contrast, 

fading-corrected pIR50IRSL225 ages are generally strati-

graphically consistent for both the MAM and ADM (Fig. 

8 and Table 2).  

5. Discussion  

5.1. Luminescence dating of fluvial deposits in Indonesia 
Application of luminescence dating in Indonesia has 

been shown to be challenging (Westaway, 2009) and our 

quartz luminescence measurements yielded complex prop-

erties. We stimulated our quartz samples with blue  

Table 2. Summary of age calculation using the MAM and ADM and comparison between IR50 and pIR50IRSL225 signals. MAM ages of all samples except 
the pIR50IRSL225 age of sample L6 are shown in Fig. 8. 

IR50 
Sample 
Code 

De (Gy) 
*na/nm OD (%)  ** 𝜎b g2days (%/dec) n/N (n/N)ss 

Age (ka)  Age fading-corrected (ka) 

MAM ADM MAM ADM MAM ADM 

L7  4.84 ± 0.86  13.96 ± 1.81 43/48  71 ± 8 0.3  7.87 ± 3.22  0.01 ± 0.00  0.2 ± 0.02  3 ± 1  8 ± 1  8 ± 4  26 ± 17 

L6  6.64 ± 0.95  8.85 ± 0.83 48/48  49 ± 5 0.3  6.67 ± 1.29  0.00 ± 0.00  0.04 ± 0.01  4 ± 1  5 ± 1  8 ± 3  11 ± 5 

L5  12.80 ± 2.24  52.04 ± 6.30 45/48  81 ± 9 0.3  7.29 ± 1.49  0.01 ± 0.00  0.21 ± 0.02  7 ± 1  28 ± 4  18 ± 10  83 ± 61 

L4  13.99 ± 3.83  185.50 ± 18.52 38/48  92 ± 11 0.3  0.87 ± 0.71  0.03 ± 0.01  0.82 ± 0.52  10 ± 3  131 ± 13  10 ± 3  142 ± 18 

L3  40.40 ± 9.86  192.83 ± 17.35 30/48  72 ± 6 0.3  3.19 ± 0.94  0.09 ± 0.08  0.52 ± 0.12  29 ± 7  137 ± 13  40 ± 12  198 ±  34 

L2  345.03 ± 48.49  361.41 ± 28.23 19/32  31 ± 5 0.3  2.87 ± 1.51  0.54 ± 0.03  0.57 ± 0.16  158 ± 23  166 ± 14  219 ± 68  230 ± 64 

L1  173.24 ± 25.67  240.37 ± 15.72 37/48  39 ± 5 0.3  3.18 ± 0.46  0.35 ± 0.08  0.53 ± 0.16  142 ± 22  197 ± 15  204 ± 35  285 ± 29 

 
pIR50IRSL225 

Sample 
Code 

De (Gy) 
*na/nm OD (%) ** 𝜎b g2days (%/dec) n/N (n/N)ss 

Age (ka) Age fading-corrected (ka) 

MAM ADM MAM ADM MAM ADM 

L7  18.01 ± 2.58  33.22 ± 4.79 43/48  67 ± 7 0.3  3.99 ± 1.49  0.06 ± 0.01  0.44 ± 0.15  11 ± 2  19 ± 3  16 ± 5  30 ± 10 

L6  27.01 ± 1.34  27.82 ± 0.87 48/48  21 ± 1 -  2.31 ± 1.20  0.05 ± 0.00  0.62 ± 0.24 -  16 ± 2 -  19 ± 4 

L5  33.75 ± 4.71  56.10 ± 6.45 37/48  56 ± 7 0.3  1.88 ± 0.36  0.06 ± 0.01  0.59 ± 0.21  18 ± 3  30 ± 3  23 ± 4  40 ± 5 

L4  38.21 ± 8.60  218.17 ± 23.88 25/48  80 ± 11 0.3  1.16 ± 0.37  0.09 ± 0.01  0.62 ± 0.45  27 ± 6  154 ± 17  30 ± 7  172 ± 20 

L3  86.70 ± 20.70  198.58 ± 27.15 21/48  60 ± 10 0.3  2.59 ± 1.71  0.39 ± 0.05  0.73 ± 0.40  62 ± 15  141 ± 21  90 ± 27  162 ± 40 

L2  307.74 ± 87.82  478.05 ± 65.72 10/32  43 ± 11 0.3  0.60 ± 0.89  0.62 ± 0.09  0.82 ± 0.55  142 ± 40  220 ± 30  150 ± 46  233 ± 40 

L1  208.35 ± 51.98  297.41 ± 36.87 12/48  40 ± 10 0.3  0.35 ± 0.70  0.65 ± 0.11  0.72 ± 0.54  171 ± 43  244 ± 33  177 ± 47  252 ± 40 
 

* na/nm
 = Number of accepted aliquots (na) / number of measured aliquots (nm) 

** 𝜎b = Sigma-b 
 

 

Fig. 7. Comparison of fading-corrected IR50 and pIR50IRSL225 ages calcu-
lated with the ADM and the MAM. 
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(~400 nm) and green LEDs (~500 nm), but were unable to 

isolate a fast component (Fig. 3). The blue and green stim-

ulated OSL signals are not suitable for dating, as the sig-

nals are dim and dominated by slower signal components 

(i.e., medium and slow components), which may be ther-

mally unstable and could lead to age underestimation (e.g., 

Steffen et al., 2009). Furthermore, the IR response of the 

quartz minerals may complicate their dating although we 

did not explore this further given that the samples were not 

fast component dominated. Thus, quartz cannot be used for 

dating sediments from the Kampar Kanan River.  

The feldspars under investigation showed suitable lu-

minescence properties with signals brighter than for OSL 

of quartz, although the amount of sensitive feldspar grains 

was limited. Although we analysed multiple grains, be-

cause of the limited amount of feldspar in our samples, the 

total signal is presumably dominated by that of 1–5 grains 

on a multi-grain aliquot, dependent on sample and grain 

size. Low residual doses (<1% of the natural signal) and 

successful dose recovery indicate the suitability of the pIR-

IRSL protocol for MG K-feldspar used in this study. This 

is in agreement with previous studies in West Sumatra 

(Westaway et al., 2017; Duval et al., 2021).  

Interpreting the distribution of De values for the differ-

ent samples is challenging, except for sample L6, which 

shows a log-normal distribution (Fig. 6 and Fig. S3). Most 

of the dose distributions for the samples investigated have 

a pattern of positive skewness (Fig. 6) and high OD values. 

These are typical of heterogeneously bleached sediments 

(Bejarano-Arias et al., 2023) and suggest that the MAM is 

appropriate. For samples L1 and L2, the field saturation 

test indicates that these samples are either saturated, or 

close to saturation (Table 2 and Fig. S3). Thus, the MAM 

gives minimum ages for those samples. In contrast to the 

other samples investigated, the post-IR IRSL signal of 

sample L6 has an OD of only 21 ± 1 % and, thus, the ADM 

age is used for this signal of this sample. Furthermore, 

ADM ages are likely to overestimate the depositional age 

for most of the samples, because of the high likelihood of 

heterogeneous bleaching in fluvial environments (Olley et 

al., 1998; Stokes et al., 2001; Wallinga, 2002; Jain et al., 

2004; Duller, 2008; Rittenour, 2008). Consequently, the 

MAM was used for samples L3, L4, L5 and L7, which 

gave high OD values (≥ 50%). These ages may still over-

estimate the true burial age of the specific samples because 

the sediments were likely incompletely bleached. Whilst 

reduced bleaching of pIR50IRSL225 signals potentially 

causes age overestimation, the high fading rates of many 

of the IR50 signals likely make them less reliable. Conse-

quently, we opt to use the fading-corrected pIR50IRSL225 

 

Fig. 8. Luminescence chronology relative to changing climate and Marine Isotope Stages (MIS). Temperature record and MIS of the last 250 ka modified 
from Railsback et al. (2015). 
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ages. Despite the challenging sample properties, these ages 

provide a first chronological framework for the Kampar 

Kanan River. 

5.2. First indications for the Pleistocene evolution of 
the upper Kampar Kanan River reach 

Luminescence dating of the Kampar Kanan River ter-

race profile provides a chronology of fluvial sediment dep-

osition during the Middle to Late Pleistocene and gives 

first insights into phases of fluvial adjustments. Given the 

saturated luminescence signals, the lowermost samples L1 

and L2 yield only minimum ages of ~177 ka and ~150 ka, 

respectively, indicating fluvial aggradation during MIS 6 

or earlier (Fig. 8). The overlying sediment layer is dated to 

90 ± 27 ka in its lower part (sample L3) revealing fluvial 

deposition during the outgoing phase of the last intergla-

cial and/or MIS 5 (given the large associated uncertainty 

of the luminescence age). Pollen assemblages and oxygen 

isotopic measurements in southwest Sumatra (Van Der 

Kaars et al., 2010) reported generally drier conditions and 

weaker monsoon intensity during MIS 5a and indicated 

both vegetation and climate remained similar during MIS 

4 and earliest part of MIS 3. Unit 3 is characterized by a 

fining upward sequence indicative of reducing fluvial en-

ergy and decreasing aggradation (Wang et al., 2021), 

which might represent more stable conditions at this loca-

tion of the Kampar Kanan River floodplain (e.g. Vanden-

berghe, 1995; Bogaart et al., 2003; Wang et al., 2015, 

Wang et al., 2021).  

The overlying sample L4 is dated to ca. 30 ka showing 

a gap of approx. 60 ka between units 3 and 4. During MIS 

3/2, the cooling climate was likely associated with lower 

rates of sediment deposition (e.g., van der Kaars, 2010). 

During this period the summer monsoon became stronger, 

increasing stream discharge and delaying vegetation re-

covery (Wang et al., 2021). Unit 3 shows finer sediments 

indicative of overbank fines in the terrace sequence. Sam-

ples L5 to L7 were deposited during MIS2, the last glacial 

maximum (LGM), characterized by reduced temperatures 

and increased humidity (van der Kaarst et al., 2010) The 

upper units are characterized by medium to coarse sand 

with fine-grained sediments likely accumulating during 

overbank flooding at times of high monsoon precipitation 

such that fine sediment deposition on the floodplain at a 

low rate occurred coincident with slight incision (e.g. Van-

denberghe, 1995; Wang et al., 2019; Wang et al., 2021).  

From these samples, we interpret that aggradation dur-

ing climate transitions from cold to warm periods resulted 

in mixed sand-gravel beds indicating braided river channel 

development and traction-current gravel facies under pre-

dominately cold climatic conditions (e.g. Wang et al., 

2015; Gao et al., 2016; Wang et al., 2021). Frequent chan-

nel migration under high-energy flow conditions may be 

due to decreasing vegetation cover and more intense slope 

erosion resulting in increasing sediment supply (e.g. 

Bridgland and Westaway, 2008; Lewin and Gibbard, 

2010; Stokes et al., 2017., Wang et al., 2021). The aban-

donment of the overbank fines is characterized by soil for-

mation on top of the sediment sequence, showing more sta-

ble conditions in this particular area and highlighting in-

creased incision of the river. 

6. Conclusion 

Analysis of a suite of samples from a fill terrace of the 

Kampar Kanan River showed that the OSL of quartz meas-

ured using blue or green stimulation as well as SAR or 

double SAR protocols is not suitable due to IR sensitivity 

and the absence of a fast component. In contrast, 

pIR50IRSL225 dating of MG K-feldspar yielded a strati-

graphically consistent chronology between MIS 6 or ear-

lier to MIS 1, although anomalous fading and partial 

bleaching of fluvial sediments remain challenging for da-

ting. Luminescence dating and sedimentological analyses 

show that the Kampar Kanan River aggrades during cli-

mate transitions from wet to dry periods, suggesting a sig-

nificant increase in sediment supply and/or reduced 

transport capacity.  
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