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Abstract 
The rapid increase in tree-ring radiocarbon concentration of 12‰ between 774–775 CE marked the first confirmed 
cosmic-origin event identified through annual tree-ring records. Subsequent studies have independently verified 
this signal in dendrochronologically dated material from multiple regions, confirming its global nature. Since then, 
several comparable events have been identified across different periods. These radiocarbon spikes are of particular 
importance because they provide precise annual tie-points that can significantly improve chronological resolution 
in fields such as archaeology and geology. In this paper, we present a simple method for detecting such events in 
high-resolution radiocarbon datasets. 
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1. Introduction 

Radiocarbon (¹⁴C) is a cosmogenic nuclide produced when 

thermal neutrons collide with nitrogen nuclei through the 

nuclear reaction ¹⁴N(n,p)¹⁴C. Its average production rate – 

estimated at 1.64 atoms·cm⁻²·s⁻¹ in modern times and 1.88 

atoms·cm⁻²·s⁻¹ in the preindustrial era (Kovaltsov et al., 

2012) – varies with fluctuations in cosmic-ray flux. Sev-

eral mechanisms have been proposed to explain these fluc-

tuations, including solar energetic particles events (SEPs), 

supernova explosions (SNe), gamma-ray bursts (GRBs), 

and the modulation of cosmic-ray intensity by solar, inter-

planetary, and terrestrial magnetic fields. 

Once formed in the atmosphere, ¹⁴C is eventually oxi-

dized to ¹⁴CO₂ and incorporated into plants via photosyn-

thesis (Jöckel et al., 1999). Its concentration in plant tis-

sues reflects atmospheric ¹⁴C levels during the growing 

season, with variations arising from plant species differ-

ences and geographic location. Dendrochronologically 

dated tree rings are a key archive for reconstructing past 

changes in ¹⁴C over the last 12,500 years, revealing both 

production rate variations and carbon cycle changes 

(Reimer et al., 2020; Hogg et al., 2020). Advances in ac-

celerator mass spectrometry (AMS) have greatly improved 

measurement precision and resolution while reducing the 

sample size required (Synal et al., 2007; Molnar et al., 

2016), enabling the construction of radiocarbon calibration 

curves at annual resolution (Reimer et al., 2020; Hogg et 

al., 2020). 

In a landmark discovery, Miyake et al. (2012) identi-

fied an abrupt ~12‰ increase in Δ¹⁴C between 774–775 

CE in Japanese cedar tree rings. This so called “M12 event” 

was the first confirmed, globally synchronous ¹⁴C anomaly 

of likely cosmic origin, later independently verified in tree-

ring records from multiple continents (Jull et al., 2014; 

Güttler et al., 2015a, 2015b; Rakowski et al., 2015; 

Büntgen et al., 2018). Such events provide valuable in-

sights into processes affecting ¹⁴C production rates and 

have significant implications for radiocarbon dating 
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accuracy. If not accounted for during the conversion to cal-

endar years using calibration curves, these sharp increases 

may lead to substantial dating errors, particularly for short-

lived materials such as seeds, leaves, or annually formed 

tree rings, assuming they were affected by such events. 

The incorporation of these short termed, rapid ¹⁴C ex-

cursions into calibration datasets opens the door to ultra-

precise dating – sometimes to within a single calendar year 

– using techniques such as wiggle-matching in longer 14C 

sequences covering such events. Wacker et al. (2014) 

demonstrated this by precisely dating timber from the Holy 

Cross Chapel of St. John the Baptist Convent in Val 

Müstair, Switzerland. Similarly, Krąpiec et al. (2020) used 

the 993–994 CE excursion to anchor a floating pine chro-

nology spanning 859–1085 CE. Other studies have used 

such events to pinpoint the timing of volcanic eruptions 

(Oppenheimer et al., 2017; Hakozaki et al., 2018), the on-

set of long-distance Norse trade (Philipsen et al., 2022), 

and the Viking settlement at L’Anse aux Meadows, New-

foundland (Kuitems et al., 2022). 

2. Material and methods 

This study introduces a deliberately simple mathematical 

approach for detecting short periods of rapid increases in 

radiocarbon (¹⁴C) concentration. Detection was performed 

using the IntCal20 calibration dataset (Reimer et al., 2020). 

The underlying raw measurements that contributed to the 

construction of this curve were consulted only for a few 

specific examples, not as part of the primary search for ¹⁴C 

increases. IntCal20 file as well as “raw” datasets were 

downloaded directly from http://calib.org IntCal20 data-

base server.  

Our method was designed to be transparent, reproduc-

ible, and adaptable across different datasets, making it a 

practical screening tool for identifying candidate events 

quickly – without the need for extensive modelling infra-

structure. In contrast, the approach of Brehm et al. (2021) 

relied on high-precision annual ¹⁴C measurements from 

multiple absolutely dated tree-ring chronologies, com-

bined with advanced carbon-cycle box modelling, Monte 

Carlo simulations, and geomagnetic field normalization. 

While such sophisticated frameworks provide detailed 

event characterization and cross-archive synchronization, 

our streamlined method plays a complementary role: ena-

bling rapid initial detection of anomalies, which can then 

be subjected to more detailed analyses using advanced 

methods like those of Brehm et al. (2021). 

The IntCal20 dataset integrates multiple sources. Its 

most recent 13,900-year segment is derived from tree-ring 

data with annual resolution back to 5000 years BP, fol-

lowed by 5-year resolution extending to 15,000 years BP. 

Beyond this, the dataset incorporates both terrestrial and 

marine archives, including laminated lake sediments, 

U/Th-dated speleothems, and U/Th-dated corals. Tem-

poral resolution between 13,900 and 25,000 BP is 10 years, 

and for >25,000 BP, the resolution is 20 years. 

Documented ¹⁴C excursions are typically short-lived, 

often spanning only a few years, and have amplitudes of 

several permille in Δ¹⁴C. To identify such events in the 

IntCal20 tree-ring portion, we applied a moving average 

comparison method. Specifically, for each year of interest 

(n), we calculated the average Δ¹⁴C value for the three pre-

ceding years (n+1, n+2, n+3) and compared it to the Δ¹⁴C 

value in year n. The resulting difference is referred to as 

the temporal Δ¹⁴C rise, defined as: 

Temporal  Δ14C rise = Δ14C𝑛 −
Δ14C𝑛+3+Δ14C𝑛+2+Δ14C𝑛+1

3
 (1) 

where n – is a year BP of the data-point in the IntCal20 

data set.  

We initially identified candidate excursions through an 

iterative heuristic process. Because excursion amplitudes 

can be as small as a few permille – and the IntCal20 curve 

is smoothed (Heaton et al., 2020) – we systematically ad-

justed the detection threshold to ensure all known ¹⁴C ex-

cursions (Table 1) were captured, while minimizing back-

ground noise. A 1‰ threshold for a temporal Δ¹⁴C rise was 

found to be optimal. Although this may seem low, smooth-

ing in IntCal20 necessitates a reduced detection limit. This 

threshold is illustrated by the red horizontal line in Figs. 1 

and 2. Lowering it further may reveal additional potential 

Δ¹⁴C increases. 

3. Results and discussion 

The results of the search for rapid ¹⁴C excursions in radio-

carbon concentration are presented in Figs. 1 and 2 and in 

Table 1. Table 1 lists all identified and possible periods of 

abrupt increases in radiocarbon concentration. 

Besides the M12 event in 774–775 CE (Miyake et al., 

2012), several similar events have been confirmed at dif-

ferent periods. An increase of 11.3‰ was recorded be-

tween 993 and 994 CE (Miyake et al., 2013, 2014) and 

later confirmed by Rakowski et al. (2018), Fogtman-

Schulz et al. (2017), and Büntgen et al. (2018). An event 

around 660 BCE was confirmed by Park et al. (2017), 

Rakowski et al. (2019), O’Hare et al. (2019), and Sakurai 

et al. (2020). Measurements of radiocarbon concentrations 

in sub-annual tree rings for this period suggest a two-phase 

pattern, with a first event between 665–664 BCE followed 

by a second in late spring of 663 BCE (Rakowski et al., 

2024). 

Other radiocarbon excursions have been observed be-

tween 814–815 BCE (Jull et al., 2018), 1054–1055 CE 

(Tarrasi et al., 2020), and as a series of events between 

1261–1262, 1268–1269, and 1279–1280 CE (Miyahara et 

al., 2022). The oldest observed rapid increases in radiocar-

bon concentration occurred during the mid-Holocene 

around 5480 BCE (Miyake et al., 2017), 5410 BCE 

(Miyake et al., 2021), 5259 BCE, and 7176 BCE, with 

magnitudes comparable to the strongest M12 event 

(Brehm et al., 2022), though these are not included in this 

study. 

http://calib.org/
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Table 1. Confirmed and proposed periods in IntCal20 (Reimer et al., 2020) showing rapid changes in radiocarbon concentration. The uncertainty was 
estimated as the duration of the period during which Δ¹⁴C exceeded the selected criterion, relative to the running mean average, plus one year. 

Year BP Calendar year Possible event Literature 

 4420 ± 12  2470 ± 12 BCE – this study 

 4152 ± 9  2202 ± 9 BCE – this study 

 3480 ± 5  1530 ± 5 BCE – this study 

 2756 ± 8  806 ± 8 BCE  814–815 BCE Jull et al., 2018 

 2614 ± 9  664 ± 9 BCE  665–664 BCE 

Park et al., 2017 
O‘Hare et al., 2019 

Rakowski et al., 2019, 2024 
Sakurai et al., 2020 

 2344 ± 5  394 ± 5 BCE – this study 

 1533 ± 5  417 ± 5 CE – this study 

 1178 ± 10  772 ± 10 CE  774–775 CE 

Miyake et al., 2012 
Jull et al., 2014 

Rakowski et al., 2015 
Güttler et al., 2015a, 2015b 

Büntgen et al., 2018 

 958 ± 9  992 ± 9 CE  993–994 CE 

Miyake et al., 2013, 2014 
Fogtman-Schultz et al., 2017 

Rakowski et al., 2018 
Büntgen et al., 2018 

 927 ± 5  1023 ± 5 CE – this study 

Undetected at the 1‰ threshold -  1054–1055 CE 
Terrasi et al., 2020 
Brehm et al., 2021 

 731 ± 8  1219 ± 7 CE – this study 

Undetected at the 1‰ threshold -  1261–1262 CE Miyahara et al., 2022 

 673 ± 9  1277 ± 9 CE 
 1268–1269 CE 
 1279–1280 CE 

Brehm et al., 2021 
Miyahara et al., 2022 

 557 ± 8  1393 ± 8 CE – this study 

 155 ± 10  1795 ± 10 CE – this study 

 140 ± 7  1810 ± 7 CE – this study 
 

 

 

Fig. 1. Results of extreme fluctuations events seach in tree rings-based part of IntCal20. Data-points above the red line suspected to be results of 14C 
concentration excursions. 

 



GEOCHRONOMETRIA | VARIATIONS IN THE RADIOCARBON CALIBRATION CURVES AROUND KNOWN AND SUSPECTED Δ¹⁴C… 

4 

For most of these events, their origin has been linked 

to solar energetic particle (SEP) events, with correspond-

ing increases in ¹⁰Be and ³⁶Cl production rates confirming 

their solar origin (775 CE – Pavlov et al., 2013; Mekhaldi 

et al., 2015; 994 CE – Mekhaldi et al., 2015; ~660 BCE – 

O’Hare et al., 2019; 7176 BCE – Paleari et al., 2022; 5480 

BCE – Kanzawa et al., 2021). 

For events such as those between 814–815 BCE (Jull 

et al., 2018), 1054–1055 CE (Terrasi et al., 2020), and the 

series between 1261–126 2, 1268–1269, and 1279–1280 

CE (Miyahara et al., 2022), the origin remains unknown. 

Their magnitudes are significantly lower than that of the 

M12 event, and without data on changes in ¹⁰Be and ³⁶Cl 

production rates, it is difficult to determine whether they 

are of solar origin. In the case of the 1054–1055 CE event, 

the Crab Nebula supernova (SN 1054; Mayall, 1939) has 

been discussed as a possible cause of increased radiocar-

bon production (Terrasi et al., 2020). 

Figs. 3 and 4 present a detailed inspection of the 

IntCal20 last-millennium and raw datasets covering our 

findings for the periods 1393 ± 8 CE, 1795 ± 10 CE, and 

1810 ± 7 CE. The last-millennium dataset was selected for 

presentation in this paper as it may be of particular interest 

to the archaeology of Eastern Europe. 

  

 

Fig. 3. Insight into the suspected period of 553±7 BP (1397±7 CE) of 
IntCal20 and raw-data sets used to build the curve. raw-1-11 data 
from Stuiver and Braziunas (1993), raw-2-2 data from McCormac 
et al. (1998). raw 2-3 data from Pearson et al. (1986). raw-3-1 
data from McCormac et al. (1998). raw-63-1 data from Manning 
and Kromer (2012). raw-69-5 data from Wacker et al. (in prep.). 
Green-shaded area represents the period suspected of ¹⁴C excur-
sion. 

 

 

Fig. 2. Results of extreme fluctuations events search for youngest 5k years tree rings based IntCal20. Data-points above horizontal red-line (1) are 
suspected to be results of 14C concentration excursions. Already know excursions are being marked green, red arrows are the new finds. 
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4. Conclusions 

This study presents a straightforward method for detecting 

periods of rapid radiocarbon excursions within the 

IntCal20 tree-ring dataset (Reimer et al., 2020). The ad-

mittedly simple algorithm (i.e. temporal concentation dif-

ference to preceeding three year average  1‰) identified 

intervals where abrupt increases in radiocarbon concentra-

tion exceed the normal variability of IntCal20. Of the 

seven known rapid 14C increases from the past 5,000 years, 

five were successfully detected. In addition, ten new po-

tential candidate periods were identified, which require 

confirmation from independent atmospheric isotope da-

tasets. Our results also show that, due to the need for sin-

gle-year resolution, only the portion of the calibration 

curve covering the last 5,000 years is suitable for such 

analysis. 
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