

Available online at https://www.geochronometria.com/

VARIATIONS IN THE RADIOCARBON CALIBRATION CURVES AROUND KNOWN AND SUSPECTED Δ¹⁴C EXCURSIONS

JACEK PAWLYTA¹, ANDRZEJ Z. RAKOWSKI² and MAREK KRAPIEC¹

¹AGH University of Kraków, Mickiewicza Av. 30, 30-059 Krakow, Poland ²Silesian University of Technology, Konarskiego 22B str., 44-100 Gliwice, Poland

Received 25 July 2024

Accepted 7 November 2025

Abstract

The rapid increase in tree-ring radiocarbon concentration of 12% between 774–775 CE marked the first confirmed cosmic-origin event identified through annual tree-ring records. Subsequent studies have independently verified this signal in dendrochronologically dated material from multiple regions, confirming its global nature. Since then, several comparable events have been identified across different periods. These radiocarbon spikes are of particular importance because they provide precise annual tie-points that can significantly improve chronological resolution in fields such as archaeology and geology. In this paper, we present a simple method for detecting such events in high-resolution radiocarbon datasets.

Keywords

radiocarbon dating, tree rings, calibration curves, Miyake event, SEP

1. Introduction

Radiocarbon (¹⁴C) is a cosmogenic nuclide produced when thermal neutrons collide with nitrogen nuclei through the nuclear reaction ¹⁴N(n,p)¹⁴C. Its average production rate – estimated at 1.64 atoms·cm⁻²·s⁻¹ in modern times and 1.88 atoms·cm⁻²·s⁻¹ in the preindustrial era (Kovaltsov *et al.*, 2012) – varies with fluctuations in cosmic-ray flux. Several mechanisms have been proposed to explain these fluctuations, including solar energetic particles events (SEPs), supernova explosions (SNe), gamma-ray bursts (GRBs), and the modulation of cosmic-ray intensity by solar, interplanetary, and terrestrial magnetic fields.

Once formed in the atmosphere, ¹⁴C is eventually oxidized to ¹⁴CO₂ and incorporated into plants via photosynthesis (Jöckel *et al.*, 1999). Its concentration in plant tissues reflects atmospheric ¹⁴C levels during the growing

season, with variations arising from plant species differences and geographic location. Dendrochronologically dated tree rings are a key archive for reconstructing past changes in ¹⁴C over the last 12,500 years, revealing both production rate variations and carbon cycle changes (Reimer *et al.*, 2020; Hogg *et al.*, 2020). Advances in accelerator mass spectrometry (AMS) have greatly improved measurement precision and resolution while reducing the sample size required (Synal *et al.*, 2007; Molnar *et al.*, 2016), enabling the construction of radiocarbon calibration curves at annual resolution (Reimer *et al.*, 2020; Hogg *et al.*, 2020).

In a landmark discovery, Miyake *et al.* (2012) identified an abrupt ~12‰ increase in Δ^{14} C between 774–775 CE in Japanese cedar tree rings. This so called "M12 event" was the first confirmed, globally synchronous ¹⁴C anomaly of likely cosmic origin, later independently verified in treering records from multiple continents (Jull *et al.*, 2014; Güttler *et al.*, 2015a, 2015b; Rakowski *et al.*, 2015; Büntgen *et al.*, 2018). Such events provide valuable insights into processes affecting ¹⁴C production rates and have significant implications for radiocarbon dating

Corresponding author: J. Pawlyta e-mail: jpawlyta@agh.edu.pl

accuracy. If not accounted for during the conversion to calendar years using calibration curves, these sharp increases may lead to substantial dating errors, particularly for short-lived materials such as seeds, leaves, or annually formed tree rings, assuming they were affected by such events.

The incorporation of these short termed, rapid ¹⁴C excursions into calibration datasets opens the door to ultraprecise dating – sometimes to within a single calendar year – using techniques such as wiggle-matching in longer ¹⁴C sequences covering such events. Wacker *et al.* (2014) demonstrated this by precisely dating timber from the Holy Cross Chapel of St. John the Baptist Convent in Val Müstair, Switzerland. Similarly, Krapiec *et al.* (2020) used the 993–994 CE excursion to anchor a floating pine chronology spanning 859–1085 CE. Other studies have used such events to pinpoint the timing of volcanic eruptions (Oppenheimer *et al.*, 2017; Hakozaki *et al.*, 2018), the onset of long-distance Norse trade (Philipsen *et al.*, 2022), and the Viking settlement at L'Anse aux Meadows, Newfoundland (Kuitems *et al.*, 2022).

2. Material and methods

This study introduces a deliberately simple mathematical approach for detecting short periods of rapid increases in radiocarbon (¹⁴C) concentration. Detection was performed using the IntCal20 calibration dataset (Reimer *et al.*, 2020). The underlying raw measurements that contributed to the construction of this curve were consulted only for a few specific examples, not as part of the primary search for ¹⁴C increases. IntCal20 file as well as "raw" datasets were downloaded directly from http://calib.org IntCal20 database server.

Our method was designed to be transparent, reproducible, and adaptable across different datasets, making it a practical screening tool for identifying candidate events quickly – without the need for extensive modelling infrastructure. In contrast, the approach of Brehm *et al.* (2021) relied on high-precision annual ¹⁴C measurements from multiple absolutely dated tree-ring chronologies, combined with advanced carbon-cycle box modelling, Monte Carlo simulations, and geomagnetic field normalization. While such sophisticated frameworks provide detailed event characterization and cross-archive synchronization, our streamlined method plays a complementary role: enabling rapid initial detection of anomalies, which can then be subjected to more detailed analyses using advanced methods like those of Brehm *et al.* (2021).

The IntCal20 dataset integrates multiple sources. Its most recent 13,900-year segment is derived from tree-ring data with annual resolution back to 5000 years BP, followed by 5-year resolution extending to 15,000 years BP. Beyond this, the dataset incorporates both terrestrial and marine archives, including laminated lake sediments, U/Th-dated speleothems, and U/Th-dated corals. Temporal resolution between 13,900 and 25,000 BP is 10 years, and for >25,000 BP, the resolution is 20 years.

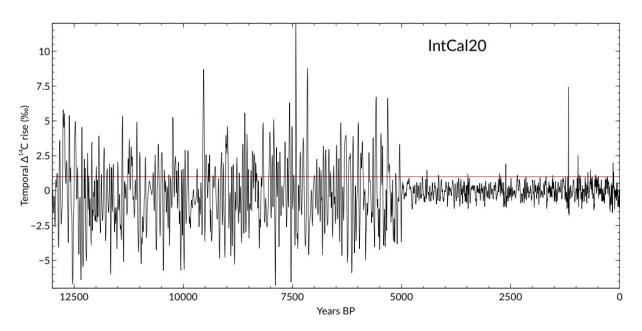
Documented ¹⁴C excursions are typically short-lived, often spanning only a few years, and have amplitudes of several permille in Δ^{14} C. To identify such events in the IntCal20 tree-ring portion, we applied a moving average comparison method. Specifically, for each year of interest (n), we calculated the average Δ^{14} C value for the three preceding years (n+1, n+2, n+3) and compared it to the Δ^{14} C value in year n. The resulting difference is referred to as the temporal Δ^{14} C rise, defined as:

Temporal
$$\Delta^{14} C \text{ rise} = \Delta^{14} C_n - \frac{\Delta^{14} C_{n+3} + \Delta^{14} C_{n+2} + \Delta^{14} C_{n+1}}{3}$$
 (1)

where n - is a year BP of the data-point in the IntCal20 data set.

We initially identified candidate excursions through an iterative heuristic process. Because excursion amplitudes can be as small as a few permille – and the IntCal20 curve is smoothed (Heaton *et al.*, 2020) – we systematically adjusted the detection threshold to ensure all known ¹⁴C excursions (**Table 1**) were captured, while minimizing background noise. A 1‰ threshold for a temporal Δ^{14} C rise was found to be optimal. Although this may seem low, smoothing in IntCal20 necessitates a reduced detection limit. This threshold is illustrated by the red horizontal line in **Figs. 1** and **2**. Lowering it further may reveal additional potential Δ^{14} C increases.

3. Results and discussion


The results of the search for rapid ¹⁴C excursions in radiocarbon concentration are presented in Figs. 1 and 2 and in Table 1. Table 1 lists all identified and possible periods of abrupt increases in radiocarbon concentration.

Besides the M12 event in 774–775 CE (Miyake *et al.*, 2012), several similar events have been confirmed at different periods. An increase of 11.3‰ was recorded between 993 and 994 CE (Miyake *et al.*, 2013, 2014) and later confirmed by Rakowski *et al.* (2018), Fogtman-Schulz *et al.* (2017), and Büntgen *et al.* (2018). An event around 660 BCE was confirmed by Park *et al.* (2017), Rakowski *et al.* (2019), O'Hare *et al.* (2019), and Sakurai *et al.* (2020). Measurements of radiocarbon concentrations in sub-annual tree rings for this period suggest a two-phase pattern, with a first event between 665–664 BCE followed by a second in late spring of 663 BCE (Rakowski *et al.*, 2024).

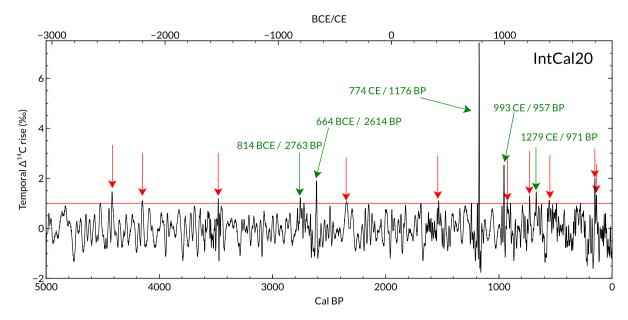

Other radiocarbon excursions have been observed between 814–815 BCE (Jull *et al.*, 2018), 1054–1055 CE (Tarrasi *et al.*, 2020), and as a series of events between 1261–1262, 1268–1269, and 1279–1280 CE (Miyahara *et al.*, 2022). The oldest observed rapid increases in radiocarbon concentration occurred during the mid-Holocene around 5480 BCE (Miyake *et al.*, 2017), 5410 BCE (Miyake *et al.*, 2021), 5259 BCE, and 7176 BCE, with magnitudes comparable to the strongest M12 event (Brehm *et al.*, 2022), though these are not included in this study.

Table 1. Confirmed and proposed periods in IntCal20 (Reimer et al., 2020) showing rapid changes in radiocarbon concentration. The uncertainty was estimated as the duration of the period during which Δ^{14} C exceeded the selected criterion, relative to the running mean average, plus one year.

Year BP	Calendar year	Possible event	Literature
4420 ± 12	2470 ± 12 BCE	_	this study
4152 ± 9	2202 ± 9 BCE	-	this study
3480 ± 5	1530 ± 5 BCE	_	this study
2756 ± 8	806 ± 8 BCE	814-815 BCE	Jull et al., 2018
2614 ± 9	664 ± 9 BCE	665-664 BCE	Park et al., 2017
			O'Hare et al., 2019
			Rakowski et al., 2019, 2024
			Sakurai et al., 2020
2344 ± 5	394 ± 5 BCE	-	this study
1533 ± 5	417 ± 5 CE	-	this study
1178 ± 10	772 ± 10 CE	774–775 CE	Miyake et al., 2012
			Jull et al., 2014
			Rakowski et al., 2015
			Güttler et al., 2015a, 2015b
			Büntgen et al., 2018
958 ± 9	992 ± 9 CE	993–994 CE	Miyake et al., 2013, 2014
			Fogtman-Schultz et al., 2017
			Rakowski et al., 2018
			Büntgen et al., 2018
927 ± 5	1023 ± 5 CE	_	this study
Undetected at the 1‰ threshold -		1054-1055 CE	Terrasi et al., 2020
		1034=1033 CE	Brehm et al., 2021
731 ± 8	1219 ± 7 CE	-	this study
Undetected at the 1‰ threshold -		1261-1262 CE	Miyahara et al., 2022
673 ± 9	1277 ± 9 CE	1268-1269 CE	Brehm et al., 2021
		1279-1280 CE	Miyahara et al., 2022
557 ± 8	1393 ± 8 CE	-	this study
155 ± 10	1795 ± 10 CE	_	this study
140 ± 7	1810 ± 7 CE	-	this study

Fig. 1. Results of extreme fluctuations events seach in tree rings-based part of IntCal20. Data-points above the red line suspected to be results of ¹⁴C concentration excursions.

Fig. 2. Results of extreme fluctuations events search for youngest 5k years tree rings based IntCal20. Data-points above horizontal red-line (1) are suspected to be results of ¹⁴C concentration excursions. Already know excursions are being marked green, red arrows are the new finds.

For most of these events, their origin has been linked to solar energetic particle (SEP) events, with corresponding increases in ¹⁰Be and ³⁶Cl production rates confirming their solar origin (775 CE – Pavlov *et al.*, 2013; Mekhaldi *et al.*, 2015; 994 CE – Mekhaldi *et al.*, 2015; ~660 BCE – O'Hare *et al.*, 2019; 7176 BCE – Paleari *et al.*, 2022; 5480 BCE – Kanzawa *et al.*, 2021).

For events such as those between 814–815 BCE (Jull et al., 2018), 1054–1055 CE (Terrasi et al., 2020), and the series between 1261–126 2, 1268–1269, and 1279–1280 CE (Miyahara et al., 2022), the origin remains unknown. Their magnitudes are significantly lower than that of the M12 event, and without data on changes in ¹⁰Be and ³⁶Cl production rates, it is difficult to determine whether they are of solar origin. In the case of the 1054–1055 CE event, the Crab Nebula supernova (SN 1054; Mayall, 1939) has been discussed as a possible cause of increased radiocarbon production (Terrasi et al., 2020).

Figs. 3 and **4** present a detailed inspection of the IntCal20 last-millennium and raw datasets covering our findings for the periods 1393 ± 8 CE, 1795 ± 10 CE, and 1810 ± 7 CE. The last-millennium dataset was selected for presentation in this paper as it may be of particular interest to the archaeology of Eastern Europe.

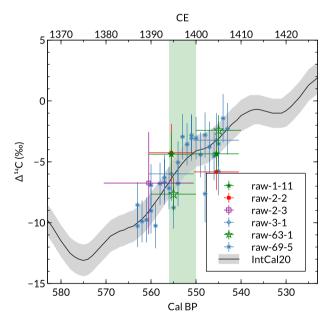


Fig. 3. Insight into the suspected period of 553±7 BP (1397±7 CE) of IntCal20 and raw-data sets used to build the curve. raw-1-11 data from Stuiver and Braziunas (1993), raw-2-2 data from McCormac et al. (1998). raw 2-3 data from Pearson et al. (1986). raw-3-1 data from McCormac et al. (1998). raw-63-1 data from Manning and Kromer (2012). raw-69-5 data from Wacker et al. (in prep.). Green-shaded area represents the period suspected of ¹⁴C excursion.

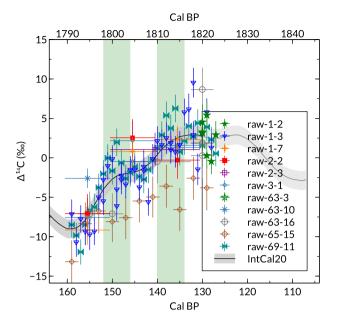


Fig. 4. Insight into the suspected periods: 149±9 BP (1801±9 CE) and 137±6 BP (1813±6 CE) of IntCal20 and raw-data sets used to build the curve. raw-1-2, raw-1-3 and raw-1-7 data from Stuiver and Braziunas (1993), raw-2-2 data from McCormac et al. (1998). raw 2-3 data from Pearson et al. (1986). raw-3-1 data from McCormac et al. (1998). raw-63-3 and raw-63-10 data from Manning and Kromer (2012). raw-63-16 data from Manning et al. (2018). raw-65-15 data from Sakamoto et al. (2017). raw-69-11 data from Wacker et al. (in prep.). Green-shaded areas represent the periods suspected of ¹4C excursions.

4. Conclusions

This study presents a straightforward method for detecting periods of rapid radiocarbon excursions within the IntCal20 tree-ring dataset (Reimer *et al.*, 2020). The admittedly simple algorithm (i.e. temporal concentation difference to preceding three year average ≥ 1‰) identified intervals where abrupt increases in radiocarbon concentration exceed the normal variability of IntCal20. Of the seven known rapid ¹⁴C increases from the past 5,000 years, five were successfully detected. In addition, ten new potential candidate periods were identified, which require confirmation from independent atmospheric isotope datasets. Our results also show that, due to the need for single-year resolution, only the portion of the calibration curve covering the last 5,000 years is suitable for such analysis.

Acknowledgement

This work was partly supported by the National Science Centre, Poland, grant UMO-2022/45/B/ST10/02095, EU-ROPLANET24 grant 20-EPN2-018 and Nagoya University ISEE -International Joint Research Program-00027. Publication supported as part of the Excellence Initiative – Research University program implemented at the Silesian University of Technology, year 2022 (14/020/SDU/10-27-01). This work was partly supported by AGH University grant 16.16.140.315.

References

Brehm N, Bayliss A, Christl M, Synal HA, Adolphi F, Beer J, Kromer B, Muscheler R, Solanki SK, Usoskin I, Bleicher N, Bollhalder S, Tyers C and Wacker L, 2021. Eleven-Year Solar Cycles over the Last Millennium Revealed by Radiocarbon in Tree Rings. *Nature Geoscience* 14(1): 10–15, DOI 10.1038/s41561-020-00674-0.

Brehm N, Christl M, Adolphi F, Muscheler R, Synal, H.-A, Mekhaldi F, Paleari C, Leuschner HH, Bayliss, A, Nicolussi K, Pichler T, Schlüchter C, Pearson C, Salzer M, Fonti P, Nievergelt D, Hantemirov R, Brown D, Usoskin, I and Wacker L, 2022. Tree rings reveal two strong solar proton events in 7176 and 5259 BCE. *Nature Communications*, DOI 10.21203/rs.3.rs-753272/v1.

Büntgen U, Wacker L, Galván JD, Arnold S, Arseneault D, Baillie M, Beer J, Bernabei M, Bleicher N, Boswijk G, et al., 2018. Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE. *Nature Communications* 9(1): 3605, DOI 10.1038/s41467-018-06036-0.

Fogtmann-Schulz A, Ostbo SM, Nielsen SGB, Olsen J, Karoff C and Knudsen MF, 2017. Cosmic ray event in 994 CE recorded in radiocarbon from Danish oak. *Geophysical Research Letters* 44(16): 8621–8628, DOI 10.1002/2017GL074208.

Güttler D, Beer J, Bleicher N, Boswijk G, Hogg AG, Palmer JG, Vockenhuber C, Wacker L and Wunder J, 2015a. Worldwide detection of a rapid increase of cosmogenic 14C in AD 775. Poster presented at the Nuclear Physics in Astrophysics.

Güttler D, Adolphi F, Beer J, Bleicher N, Boswijk G, Christl M, Hogg A, Palmer j, Vockenhuber C, Wacker L and Wunder J, 2015b. Rapid increase in cosmogenic 14C in AD 775 measured in New Zealand kauri trees indicates short-lived increase in 14C production spanning both hemispheres. *Earth and Planetary Science Letters* 411: 290–297, DOI 10.1016/j.epsl.2014.11.048.

Hakozaki M, Miyake F, Nakamura T, Kimura K, Masuda K and Okuno M, 2018. Verification of the annual dating of the 10th century Baitoushan volcano eruption based on an AD 774–775 radiocarbon spike. *Radiocarbon* 60(1): 261–268, DOI 10.1017/RDC.2017.75.

Heaton TJ, Blaauw M, Blackwell PG, Bronk Ramsey C, Reimer PJ, and Scott EM, 2020. 'The IntCal20 Approach to Radiocarbon Calibration Curve Construction: A New Methodology Using Bayesian Splines and Errors-in-Variables'. *Radiocarbon* 62(4): 821–863. DOI 10.1017/RDC.2020.46.

Hogg AG, Heaton TJ, Hua Q, Palmer JG, Turney CSM and Wacker L, 2020. SHCal20 Southern hemisphere calibration, 0–55,000 years cal BP. Radiocarbon 62(4): 759–778, DOI 10.1017/RDC.2020.59.

Jöckel P, Lawrence MG and Brenninkmeijer CAM, 1999. Simulations of cosmogenic14 CO using the three-dimensional atmospheric model MATCH: Effects of14 C production distribution and the solar cycle. *Journal of Geophysical Research: Atmospheres* 104(D9): 11733– 11743. DOI 10.1029/1999JD900061.

Jull AJT, Panyushkina IP, Lange TE, Kukarskih VV, Myglan VS, Clark KJ, Salzer MW, Burr GS and Leavitt SW, 2014. Excursions in the 14C

- record at A.D. 774–775 in tree rings from Russia and America. *Geophysical Research Letters* 41(8): 3004–3010.
- Jull AJT, Panyushkina I, Miyake F, Masuda K, Nakamura T, Mitsutani T, Lange TE, Cruz R, Baisan C, Janovics R, Varga T and Molnar M, 2018. More rapid 14C excursions in the tree-ring record: A record of different kind of solar activity at about 800 BC? *Radiocarbon* 60(4): 1237–1248, DOI 10.1017/RDC.2018.53.
- Kanzawa K, Miyake F, Horiuchi K, Sasa K, Takano K, Matsumura M, et al., 2021. High-resolution ¹⁰Be and ³⁶Cl data from the Antarctic Dome Fuji ice core (~100 years around 5480 BCE): An unusual grand solar minimum occurrence? *Journal of Geophysical Research: Space Physics* 126: e2021JA029378, DOI 10.1029/2021JA029378.
- Kovaltsov GA, Mishev A and Usoskin IG, 2012. A new model of cosmic production of radiocarbon 14C in the atmosphere. *Earth and Planetary Sciences Letter* 337–338: 114–120.
- Krąpiec M, Rakowski AZ, Pawlyta J, Wiktorowski D and Bolka M, 2020. Absolute dendrochronological scale for pine (Pinus sylvestris L.) from Ujscie (N_W Poland), dated using rapid atmospheric 14C changes. Radiocarbon 63(4): 1205–1214, DOI 10.1017/RDC.2020.116.
- Kuitems M, Wallace BL, Lindsay C, et al., 2022. Evidence for European presence in the Americas in ad 1021. Nature 601: 388–391, DOI 10.1038/s41586-021-03972-8.
- Manning SW and Kromer B, 2012. Considerations of the Scale of Radiocarbon Offsets in the East Mediterranean, and Considering a Case for the Latest (Most Recent) Likely Date for the Santorini Eruption. Radiocarbon 54(3–4): 449–474, DOI 10.1017/S0033822200047202.
- Manning SW, Griggs C, Lorentzen B, Bronk Ramsey C, Chivall D, Jull AJT and Lange TE, 2018. Fluctuating Radiocarbon Offsets Observed in the Southern Levant and Implications for Archaeological Chronology Debates. *Proceedings of the National Academy of Sciences of the United States of America* 115: 6141–6146.
- Mayall NU, 1939. The Crab Nebula, a probable supernova. *Astronomical Society of the Pacific Leaflets* 3: 145.
- McCormac FG, Hogg AG, Higham TFG, Lynch-Stieglitz J, Broecker WS, Baillie MGL, Palmer J, Xiong L, Pilcher JR, Brown D and Hoper, ST, 1998. Temporal variation in the interhemispheric C-14 offset. *Geophysical Research Letters* 25: 1321–1324, DOI 10.1029/98GL01065.
- Mekhaldi F, Muscheler R, Adolphi F, Aldahan A, Beer J, McConnell JR, Possnert G, Sigl M, Svensson A, Synal H-A, Welten KC and Woodruff TE, 2015. Multiradionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and 993/4. *Nature Communications* 6: 8611, DOI 10.1038/ncomms9611.
- Miyake F, Nagaya K, Masuda K and Nakamura T, 2012. A signature of cosmic-ray increases in AD 774–775 from tree rings in Japan. *Nature* 486(7402): 240–242, DOI 10.1038/nature11123.
- Miyake F, Masuda K and Nakamura T, 2013. Another rapid event in the carbon-14 content of tree rings. *Nature Communications* 4: 1748, DOI 10.1038/ncomms2873.
- Miyake F, Masuda K, Hakozaki M, Nakamura T, Tokanai F, Kato K, Kimura K and Mitsutani T, 2014. Verification of the cosmic-ray event in AD 993-994 by using a Japanese Hinoki tree. *Radiocarbon* 56(3): 1184–1194, DOI 10.2458/56.17769.
- Miyake F, Jull AJT, Panyushkina IP, Wacker L, Salzer M, Baisan CH, Lange T, Cruz R, Masuda K and Nakamura T, 2017. Lagrge ¹⁴C excursion in 5480 BC indicates an abnormal sun in the mid-Holocene. *Proceedings of the National Academy of Sciences of the United States of America* 114(5): 881–884, DOI 10.1073/pnas.1613144114.
- Miyake F, Panyushkina IP, Jull AJT, Adolphi F, Brehm N, Helama S, Kanzawa K, Moriya T, Muscheler R, Nicolussi K, Oinonen M, Salzer M, Takeyama M, Tokanai F and Wacker L, 2021. A Single-Year Cosmic Ray Event at 5410 BCE Registered in 14C of Tree Rings. Geophysical Research Letters 48(11): e2021GL093419, DOI 10.1029/2021GL093419.
- Miyahara H, Tokanai F, Moriya T, Takeyama M, Sakurai H, Ohyama M, Horuchi K and Hotta H, 2022. Recurrent large-scale solar proton events before the onset of the Wolf Grand Solar Minimum.

- Geophysical Research Letters 49: e2021GL097201, DOI 10.1029/2021GL097201.
- Molnar M, Rinyu L, Veres M, Seiler M, Wacker L, Synal H-A, 2016. EnvironMICADAS: A Mini ¹⁴C AMS with Enhanced Gas Ion Source Interface in the Hertelendi Laboratory of Environmental Studies (HEKAL), Hungary. *Radiocarbon* 55(2–3): 338–344, DOI 10.1017/S0033822200057453.
- O'Hare P, Mekhaldi F, Adolphi F, Reisbeck G, Aldahan A, Anderberg E, Beer J, Christl M, Fahrni S, Synal H-A, Park J, Possnert G, Southon J, Bard E and Muschler R, 2019. Multiradionuclide evidence for an extreme solar proton event around 2,610 B.P. (~660 BC). Proceedings of the National Academy of Sciences of the United States of America PNAS 116(13): 5961–5966, DOI 10.1073/pnas.1815725116.
- Oppenheimer C, Wacker L, Xu J, Galván JD, Stoffel M, Guillet S, Corona C, Sigl M, Cosmo ND, Hajdas I, Pan B, Breuker R, Schneider L, Esper J, Fei J, Hammond JOS and Büntgen U, 2017. Multi-proxy dating the "Millennium Eruption" of Changbaishan to late 946 CE. *Quaternary Science Reviews* 158: 164–171, DOI 10.1016/j.quascirev.2016.12.024.
- Paleari CI, Mekhaldi F, Adolphi F, Christl M, Vockenhuber C, Gautschi P, Beer J, Brehm N, Erhardt T, Synal HA, Wacker L, Wilhelms F and Muscheler R, 2022. Cosmogenic radionuclides reveal an extreme solar particle storm near a solar minimum 9125 years BP. Nature Communications 13: 214, DOI 10.1038/s41467-021-27891-4. PMID: 35017519; PMCID: PMC8752676.
- Park J, Southon J, Fahrni S, Creasman PP and Mewaldt R, 2017. Relationship between solar activity and Δ14C peaks in AD 775, AD 994, and 660 BC. *Radiocarbon* 59(4): 1147–1156, DOI 10.1017/RDC.2017.59.
- Pavlov A, Blinov AV, Konstantinov AN, Ostryakov VN, VasilyevGI, VdovinaMA and Volkov PA, 2013. AD 775 pulse of cosmogenic radionuclides production as imprint of a Galactic gamma-ray burst. Monthly Notices of The Royal Astronomical Society 435(4): 2878–2884, DOI 10.1093/mnras/stt1468.
- Pearson GW, Pilcher JR, Baillie MGL, Corbett DM and Qua F, 1986. High-Precision C-14 Measurement of Irish Oaks to Show the Natural C-14 Variations from AD 1840 to 5210 BC. *Radiocarbon* 28: 911–934, DOI 10.1017/S0033822200060197.
- Philipsen B, Feveile C, Olsen J and Sindbaek SM, 2022. Single-year radiocarbon dating anchors Viking Age trade cycles in time. *Nature* 601: 392–396, DOI 10.1038/s41586-021-04240-5.
- Rakowski AZ, Krąpiec M, Huels M, Pawlyta J, Dreves A and Meadows J, 2015. Increase of radiocarbon concentration in tree rings from Kujawy village (SE Poland) around AD 774–775. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 361: 564–568, DOI 10.1016/j.nimb.2015.03.035.
- Rakowski AZ, Krąpiec M, Huels M, Pawlyta J and Boudin M, 2018. Increase in radiocarbon concentration in tree rings from Kujawy village (SE Poland) around AD 993–994. *Radiocarbon* 60(4): 1249–1258, DOI 10.1017/rdc.2018.74.
- Rakowski AZ, Krąpiec M, Huels M, Pawlyta J, Hamann Ch and Wiktorowski D, 2019. Abrupt increase of radiocarbon concentration in 660 BC in the tree rings from Grabie near Karkow (SE Poland). Radiocarbon 61(5): 1327–1335, DOI 10.1017/RDC.2019.40.
- Rakowski AZ, Pawlyta J, Miyahara H, Krąpiec M, Molnár M, Wiktorowski D and Minami M, 2024. Radiocarbon concentration in sub-annual tree rings from Poland around 660 BCE. *Radiocarbon* 66(6): 1981–1990, DOI 10.1017/RDC.2023.79.
- Reimer P, Austin W, Bard E, Bayliss A, Blackwell P, Bronk Ramsey C, et al., 2020. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon 62(4): 725–757, DOI 10.1017/RDC.2020.41.
- Sakamoto M, Hakozaki M, Nakao N, Nakatsuka T, 2017. Fine structure and reproducibility of radiocarbon ages of middle to early modern Japanese tree rings. *Radiocarbon* 59: 1907–1917, DOI 10.1017/RDC.2017.133.

- Sakurai H, Tokanai F, Miyake F, Horiuchi K, Masuda K, Miyahara H, Ohyama M, Sakamoto M, Mitsurani T and Moriya T, 2020. Prolonged production of 14C during the ~660 BCE solar proton event from Japanese tree rings. *Scientific Reports* 10: 660, DOI 10.1038/s41598-019-57273-2.
- Stuiver M and Braziunas TF, 1993. Sun, ocean, climate and atmospheric $^{14}\text{CO}_2$: an evaluation of causal and spectral relationships. *Holocene* 3: 289–305.
- Synal H-A, Stocker M and Suter M, 2007. MICADAS: a new compact radiocarbon AMS system. *Nuclear Instruments and Methods in Physics Research B* 259(1): 7–13, DOI 10.1016/j.nimb.2007.01.138.
- Tarrasi F, Marzaioli F, Bouompane R, Passariello I, Capano M, Helama S, Oinonen M, Nojd P, Uusitalo J, Jull AJT, Panyushkina IP, Baisan C, Molnar M, Varga T, Kovaltsov G, Poluianov S and Usoskin I, 2020. Can the 14C production in 1055 CE be affected by SN1054? *Radiocarbon* 62(5): 1403–1418, DOI 10.1017/RDC.2020.58.
- Wacker L, Guttler D, Goll J, Hurni J, Synal H-A and Walti N, 2014. Radiocarbon dating to a single year by means of rapid atmospheric 14C changes. *Radiocarbon* 56(2): 573–579, DOI 10.2458/56.17634.
- Wacker et al. in preparation