RESEARCH PAPER
Drawing the Optimal Depth-Age Curve on the Basis of Calibrated Radiocarbon Dates
 
 
More details
Hide details
1
Department of Geoinformatics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
 
 
Online publication date: 2008-09-05
 
 
Publication date: 2008-01-01
 
 
Geochronometria 2008;31:1-5
 
KEYWORDS
ABSTRACT
The radiocarbon determination of age has the form of a complicated probability density function. In some cases however it is possible to exploit it in a precise way, in drawing the depth-age curve when a stratigraphic sequence of 14C ages is available. It is also possible to use this function in drawing the depth-age curve by hand. The necessary additional constraint on the depth-age curve adopted here is the simplicity of its shape, namely the low curvature.
REFERENCES (12)
1.
Bennett KD, 1994. Confidence intervals for age estimates and deposition times in late-Quaternary sediment sequences. Holocene 4(4): 337-348, DOI 10.1177/095968369400400401.10.1177/095968369400400401.
 
2.
Bennett KD and Fuller JL, 2002. Determining the age of the mid-Holocene Tsuga canadensis (hemlock) decline, eastern North America. Holocene 12(4): 421-429, DOI 10.1191/0959683602hl556rp.10.1191/0959683602hl556rp.
 
3.
Bronk Ramsey C, 2001. Development of the Radiocarbon Program OxCal. Radiocarbon 43(2A): 355-63.10.1017/S0033822200038212.
 
4.
Buck CE, Higham TFG and Lowe DJ, 2003. Bayesian tools for tephrochronology. Holocene 13: 639-47.10.1191/0959683603hl652ft.
 
5.
Heegaard E, Birks HJB and Telford RJ, 2005. Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. Holocene 15(4): 612-618.10.1191/0959683605hl836rr.
 
6.
Hughen K, Lehman S, Southon J, Overpack J, Marchal O, Herring C and Turnbull J, 2004. 14C activity and global carbon cycle changes over the past 50,000 years. Science 303: 202-7.10.1126/science.109030014716006.
 
7.
Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand C, Blackwell PG, Buck CE, Burr G, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hughen KA, Kromer B, McCormac FG, Manning S, Bronk Ramsey C, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J and Weyhenmeyer CE, 2004. IntCal04 terrestrial radiocarbon age calibration, 0-26 cal kyr BP. Radiocarbon 46(3):1029-58.10.1017/S0033822200033002.
 
8.
Snyder JA, Wasylik K, Fritz SC and Wright Jr. HE, 2001. Diatom-based conductivity reconstruction and palaeoclimatic interpretation of a 40-ka record from Lake Zeribar, Iran. The Holocene 11: 737-45.10.1191/09596830195753.
 
9.
Telford RJ, Heegaard E and Birks HJB, 2004. The intercept is a poor estimate of a calibrated radiocarbon age. Holocene 14: 296-8.10.1191/0959683604hl707fa.
 
10.
Walanus, A., Wasylikowa, K., Wyznaczenie relacji głębokości do wieku w profilach Zeribar (Iran), na podstawie dat radiowęglowych i korelacji palinologicznych. Conference: Problemy metodyczne interpretacji dat radiowęglowych, Rzeszów, 16 Oct. 2004.
 
11.
Wasylikowa K and Walanus A, 2004. Timing of aquatic and marshplant successions in different parts of Lake Zeribar, Iran, during the Late Glacial and Holocene. Acta Palaeobotanica 44(2): 129-140.
 
12.
Wasylikowa K, Witkowski A, Walanus A, Hutorowicz A, Alexandrowicz SW and Langer JJ, 2006. Palaeolimnology of Lake Zeribar, Iran, and its climatic implications. Quaternary Research 66: 477-496.10.1016/j.yqres.2006.06.006.
 
eISSN:1897-1695
ISSN:1733-8387
Journals System - logo
Scroll to top