Optically stimulated luminescence dating of young fluvial deposits of the Middle Elbe River Flood Plains using different age models
More details
Hide details
Department of Geosciences, National Taiwan University, No.1, Sec.4, Roosevelt Road, Taipei, 10617, Taiwan, (R.O.C.), China
Section S3: Geochronology and Isotope Hydrology, Leibniz Institute for Applied Geophysics, Stilleweg 2, 30655, Hannover, Germany
Institute of Applied Geosciences, Technische Universität Darmstadt, Schnittspahnstr. 9, 64287, Darmstadt, Germany
Environmental protection office in Saxony-Anhalt, Reideburger Strasse 47, 06009, Halle (Saale), Germany
Institute of Ecology, Subject Area Landscape Change, Leuphana University, Scharnhorststrasse 1, 21355, Lüneburg, Germany
Online publication date: 2013-12-20
Publication date: 2014-03-01
Geochronometria 2014;41(1):36-56
In the last few decades optically stimulated luminescence (OSL) dating has become an important tool in geochronological studies. The great advantage of the method, i.e. dating the depositional age of sediments directly, can be impaired by incomplete bleaching of grains. This can result in a scattered distribution of equivalent doses (DE), leading to incorrect estimation of the depositional age. Thoroughly tested protocols as well as good data analysis with adequate statistical methods are important to overcome this problem. In this study, samples from young fluvial sand and flood plain deposits from the Elbe River in northern Germany were investigated to compare its depositional ages from different age models with well-known historical dates. Coarse grain quartz (100–200 μm and 150–250 μm) and polymineral fine grains (4–11 μm) were dated using the single aliquot regenerative (SAR) dose protocol. The paleodose (DP) was calculated from the DE data set using different approaches. Results were compared with the development of the Elbe River, which is well-documented by historical records and maps covering the last 1,000 years. Depending on the statistical approach it can be demonstrated that depositional ages significantly differ from the most likely depositional age. For the investigated coarse grain quartz samples all ages calculated from the MAM-3UL, including their uncertainties, are within the historical documented age. Results of the polymineral fine grain samples are overestimating the historically documented depositional age, indicating undetectable incomplete bleaching. This study shows the importance of using an adequate statistical approach to calculate reliable OSL ages from fluvial sediments.
Aitken MJ, 1985. Thermoluminescence Dating. London, Academic Press: 359pp.
Aitken MJ, 1998. An introduction to optical dating. Oxford, Oxford University Press: 267pp.
Alappat L, Frechen M, Ramesh R, Tsukamoto S and Srinivasalu, S, 2011. Evolution of late Holocene coastal dunes in the Cauvery delta region of Tamil Nadu, India. Journal of Asian Earth Sciences 42: 381–397, DOI 10.1016/j.jseaes.2011.05.019.
Arnold LJ, Roberts RG, Galbraith RF and DeLong SB, 2009. A revised burial dose estimation procedure for optical dating of young and modern-age sediments. Quaternary Geochronology 4: 306–325, DOI 10.1016/j.quageo.2009.02.017.
Auclair M, Lamothe M and Huot S, 2003. Measurement of anomalous fading for feldspar IRSL using SAR. Radiation Measurements 37: 487–492, DOI 10.1016/S1350-4487(03)00018-0.
Bailey RM and Arnold LJ, 2006. Statistical modelling of single grain quartz DE distributions and an assessment of procedures for estimating burial dose. Quaternary Science Reviews 25: 2475–2502, DOI 10.1016/j.quascirev.2005.09.012.
Cunningham AC and Wallinga J, 2010. Selection of integration time intervals for quartz OSL decay curves. Quaternary Geochronology 5: 657–666, DOI 10.1016/j.quageo.2010.08.004.
Cunningham AC and Wallinga J, 2012. Realizing the potential of fluvial archives using robust OSL chronologies. Quaternary Geochronology 12: 98–106, DOI 10.1016/j.quageo.2012.05.007.
Ditlefsen C, 1992. Bleaching of K-feldspars in turbid water suspensions: a comparison of photo- and thermoluminescence signals. Quaternary Science Reviews 11: 33–38, DOI 10.1016/0277-3791(92)90039-B.
Duller GAT, 2003. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements 37: 161–165, DOI 10.1016/S1350-4487(02)00170-1.
Duller GAT, 1994. Luminescence dating of poorly bleached sediments from Scotland. Quaternary Science Reviews 13: 521–524, DOI 10.1016/0277-3791(94)90070-1.
Duller GAT, 2008. Single-grain optical dating of Quaternary sediments: why aliquot size matters in luminescence dating. Boreas 37: 589–612, DOI 10.1111/j.1502-3885.2008.00051.x.
Ehlers J, Astakhov V, Gibbard PL, Mangerud J and Svendsen JI, 2007. Late Pleistocene glaciations in Europe. In: Elias, S.A. (Ed.), Encyclopedia of Quaternary science. Amsterdam, Elsevier: pp.1085–1095.
Fabel E, 2001. Chronik des Dorfes Wehningen (Chronicles of the village Wehningen). unpublished (in German).
Fiebig M and Preusser F, 2007. Investigating the amount of zeroing in modern sediments of River Danube, Austria. Quaternary Geochronology 2: 143–149, DOI 10.1016/j.quageo.2006.09.001.
Fuchs M and Lang A, 2001. OSL dating of coarse-grain fluvial quartz using single-aliquot protocols on sediments from NE Peloponnese, Greece. Quaternary Science Reviews 20: 783–787, DOI 10.1016/S0277-3791(00)00040-8.
Frechen M, Schweitzer U and Zander A, 1996. Improvements in sample preparation for the fine grain technique. Ancient TL 14: 15–17.
Galbraith RF and Green PF, 1990. Estimating the component ages in a finite mixture. Nuclear Tracks and Radiation Measurements 17: 197–206, DOI 10.1016/1359-0189(90)90035-V.
Galbraith RF and Laslett GM, 1993. Statistical models for mixed fission track ages. Nuclear Tracks and Radiation Measurements 21: 459–470, DOI 10.1016/1359-0189(93)90185-C.
Galbraith RF, Roberts RG, Laslett GM, Yoshida H and Olley JM, 1999. Optical dating of single and multiple grains of quartz from Jinmium Rock Shelter, Northern Australia: Part I, experimental design and statistical models. Archaeometry 41: 339–364, DOI 10.1111/j.1475-4754.1999.tb00988.x.
Galbraith RF and Roberts RG, 2012. Statistical aspects of equivalent dose and error calculation and display in OSL dating: An overview and some recommendations. Quaternary Geochronology 11: 1–27, DOI 10.1016/j.quageo.2012.04.020.
Genieser K, 1962. Neue Daten zur Flußgeschichte der Elbe (Zielsetzung und Ergebnisse von Kartierungsbohrungen und -schürfen im Pleistozän des Raumes zwischen Dresden und Berlin). (New data about the river development of the Elbe (Mission and results of mapping Pleistocene deposits using drillings and outcrops in the area between Dresden and Berlin)) E&G: Quaternary Science Journal 13: 141–156 (in German), DOI 10.3285/eg.13.1.10.
Geyh MA, 2008. The handling of numerical ages and their random uncertainties. E&G: Quaternary Science Journal 57(1–2): 239–252, DOI 10.3285/eg.57.1-2.10.
Götz R, Bauer O-H, Friesel P, Herrmann T, Jantzen E, Kutzke M, Lauer R, Paepke O, Roch K, Rohweder U, Schwartz R, Sievers S and Stachel B, 2007. Vertical profile of PCDD/Fs, dioxin-like PCBs, other PCBs, PAHs, chlorobenzenes, DDX, HCHs, organotin compunds and chlorinated ethers in dated sediment/soil cores from floodplains of the river Elbe, Germany. Chemosphere 67B(3): 592–603, DOI 10.1016/j.chemosphere.2006.09.065.
Greve D, 1999. Das Amt Neuhaus und seine Nachbarn: Grenzbuch aus dem Jahr 1591; Generalkarte der Rögnitz-Sude-Regulierung 1789. (The Neuhaus district and its neighbors: Land register from the year 1591; General map of the Rögnitz-Suderiver control 1789.) Landkreis Lüneburg, Lüneburg. (in German).
Guerin G, Mercier N and Adamiec G, 2011. Dose-rate conversion factors: update. Ancient TL 29: 5–8.
Helms M, Büchele B, Merkel U and Ihringer J, 2002. Statistical analysis of the flood situation and assessment of the impact of diking measures along the Elbe (Labe) river. Journal of Hydrology: 267, 94–114, DOI 10.1016/S0022-1694(02)00143-9.
Huntley DJ and Lamothe M, 2001. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Canadian Journal of Earth Sciences 38: 1093–1106, DOI 10.1139/e01-013.
IKSE. International Comission for the Protection of the Elbe River. Web site: 〈 Accessed 2013 April 15.
IKSE, 2004. Dokumentation des Hochwassers vom August 2002 im Einzugsbgebiet der Elbe. Magdeburg, Internationale Kommission zum Schutz der Elbe (IKSE): 207pp (Documentation of the flood in the catchment of the Elbe River from August 2002. Magdeburg, International Commission for the Protection of the Elbe River), in German.
IKSE, 2012. Abschlussbericht über die Erfüllung des „Aktionsplans Hochwasserschutz Elbe“2003–2011. Magdeburg, Internationale Kommission zum Schutz der Elbe (IKSE): 67pp (Final report about the accomplishment of the ‚Action plan for floodprotection along the Elbe River’ 2003–2011. Magdeburg, International Commission for the Protection of the Elbe River), in German. KLIMZUG-NORD. Regional strategies concerning climate changes in the metropolitan area of Hamburg. 〈〉.
Kunz A, Frechen M, Ramesh R and Urban B, 2010. Periods of recent dune sand mobilisation in Cuddalore, Southeast India. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 161: 353–368, DOI 10.1127/1860-1804/2010/0161-0353.
Lauer T, Bonn R, Frechen M, Fuchs MC, Trier M and Tsukamoto S, 2011. Geoarchaeological studies on Roman time harbour sedi-ments in Cologne — Comparison of different OSL dating techniques. Geochronometria 38: 341–349, DOI 10.2478/s13386-011-0020-y.
Lepper K and McKeever SWS, 2002. An objective methodology for dose distribution analysis. Radiation Protection Dosimetry 101: 349–352.
Madsen AT, Murray AS, Andersen TJ, Pejrup M and Breuning-Madsen H, 2005. Optically stimulated luminescence dating of young estuarine sediments: a comparison with 210Pb and 137Cs dating. Marine Geology 214: 251–268, DOI 10.1016/j.margeo.2004.10.034.
Mauz B and Lang A, 2004. The dose rate of beta sources for optical dating applications: A comparison between fine silt and fine sand quartz. Ancient TL 22: 45–48.
Mauz B, Packman S and Lang A, 2006. The alpha effectiveness in silt-sized quartz: New data obtained by single and multiple aliquot protocols. Ancient TL 24: 47–52.
Murray AS, Olley JM and Caitcheon GG, 1995. Measurement of equivalent doses in quartz from contemporary water-lain sediments using optically stimulated luminescence. Quaternary Science Reviews 14: 365–371, DOI 10.1016/0277-3791(95)00030-5.
Murray AS and Olley JM, 2002. Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz: a status review. Geochronometria 21: 1–16.
Murray AS and Wintle AG, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32: 57–73, DOI 10.1016/S1350-4487(99)00253-X.
Murray AS and Wintle AG, 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37: 377–381, DOI 10.1016/S1350-4487(03)00053-2.
Murray AS, Buylaert JP, Thomsen KJ and Jain M, 2009. The effect of preheating on the IRSL signal from feldspar. Radiation Measurements 44: 554–559, DOI 10.1016/j.radmeas.2009.02.004.
Olley JM, Murray A and Roberts RG, 1996. The effects of disequilibria in the uranium and thorium decay chains on burial dose rates in fluvial sediments. Quaternary Science Reviews 15: 751–760, DOI 10.1016/0277-3791(96)00026-1.
Olley J, Caitcheon G and Murray A, 1998. The distribution of apparent dose as determined by optically stimulated luminescence in small aliquots of fluvial quartz: implications for dating young sediments. Quaternary Science Reviews 17: 1033–1040, DOI 10.1016/S0277-3791(97)00090-5.
Olley JM, De Deckker P, Roberts RG, Fifield LK, Yoshida H and Hancock G, 2004. Optical dating of deep-sea sediments using sin-gle grains of quartz: a comparison with radiocarbon. Sedimentary Geology 169: 175–189, DOI 10.1016/j.sedgeo.2004.05.005.
Puffahrt O, 1999. Geschützte Elbmarsch: zur Geschichte des Neuhauser Deichverbandes. (Protected Elbmarsh: The history of the dike union of Neuhaus.) Landkreis Lüneburg, Lüneburg (in German).
Prescott JR and Stephan LG, 1982. The contribution of cosmic radiation to the environmental dose for thermoluminescent dating — Latitude, altitude and depth dependences. PACT 6: 17–25.
Prescott JR and Hutton JT, 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23: 497–500, DOI 10.1016/1350-4487(94)90086-8.
Preusser F, 1999. Luminescence dating of fluvial sediments and over bank deposits from Gossau, Switzerland: fine grain dating. Quaternary Science Reviews 18: 217–222, DOI 10.1016/S0277-3791(98)00054-7.
Rees-Jones J and Tite MS, 1997. Optical dating results for british archaeological sediments. Archaeometry 39: 177–187, DOI 10.1111/j.1475-4754.1997.tb00797.x.
Rendell HM, Webster SE and Sheffer NL, 1994. Underwater bleaching of signals from sediment grains: New experimental data. Quaternary Science Reviews 13: 433–435, DOI 10.1016/0277-3791(94)90055-8.
Rittenour T, 2008. Luminescence dating of fluvial deposits: applications to geomorphic, palaeoseismic and archaeological research. Boreas 37: 613–635, DOI 10.1111/j.1502-3885.2008.00056.x.
Rommel J, Hatz M and Weniger T, 2012. Verlaufsrekonstruktion der deutschen Binnenelbe um 1830/1850 zur Bearbeitung hydromorphologischer Fragestellungen im Zuge der Umsetzung eu-ropäischer Rahmen- und Managementrichtlinien. (Reconstructing the stream course of the German Elbe for the years 1830/1850 to address hydromorphological issues regarding application of European framework and management directives). Hydrologie und Wasserbewirtschaftung 56(6): 306–319 (in German with abstract, conclusions and figure captions in English), DOI 10.5675/HyWa_2012,6_2.
Urban B, Krüger F, Weniger T, Prüter J, Keienburg T, Lang F and Graf M, 2011a. Auenböden der Elbe als Archiv für die Stoffdynamik im Einzugsgebiet. (Fluvisols of the Elbe River as archives for element dynamics in the catchment area). Deutsche Bodenkundliche Gesellschaft — Exkursionsführer 114: 42–59 (in German).
Urban B, Kunz A and Gehrt E, 2011b. Genesis and dating of Late Pleistocene-Holocene soil sediment sequences from the Lüneburg Heath, Northern Germany. E&G:Quaternary Science Journal 60: 164–184, DOI 10.3285/eg.60.1.01.
Vermeesch P, 2009. RadialPlotter: a Java application for fission track, luminescence and other radial plots, Radiation Measurements 44(4): 409–410, DOI 10.1016/j.radmeas.2009.05.003.
Wallinga J, 2002. Optically stimulated luminescence dating of fluvial deposits: a review. Boreas 31: 303–322, DOI 10.1111/j.1502-3885.2002.tb01076.x.
Wallinga J, Bos AJJ, Dorenbos P, Murray AS and Schokker J, 2007. A test case for anomalous fading correction in IRSL dating. Quaternary Geochronology 2: 216–221, DOI 10.1016/j.quageo.2006.05.014.
Wallinga J and Bos IJ, 2010. Optical dating of fluvio-deltaic clastic lake-fill sediments — A feasibility study in the Holocene Rhine delta (western Netherlands). Quaternary Geochronology 5: 602–610, DOI 10.1016/j.quageo.2009.11.001.
Wallinga J, Hobo N, Cunningham AC, Versendaal AJ, Makaske B and Middelkoop H, 2010. Sedimentation rates on embanked floodplains determined through quartz optical dating. Quaternary Geo-chronology 5: 170–175, DOI 10.1016/j.quageo.2009.01.002.
Weniger T, 2010. Untersuchungen zur Auenbodenentwicklung und zu ausgewählten Standorteigenschaften in der Mäanderschleife Wehningen — Ein Beitrag zur zukunftsfähigen Gestaltung der Kulturlandschaft an der unteren Mittelelbe. (Investigating the development of fluvisols and soil characteristics in the meander of Wehningen — A contribution for sustainable development of the cultural landscape along the middle Elbe river). Diploma thesis, Leuphana University, Lüneburg (in German). Unpublished.
Wintle AG and Murray AS, 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41: 369–391, DOI 10.1016/j.radmeas.2005.11.001.
Woldstedt P, 1956. Die Geschichte des Flußnetzes in Norddeutschland und angrenzenden Gebieten. (History of the drainage network in North-Germany and adjacent areas). E&G: Quaternary Science Journal 7: 5–12 (in German), DOI 10.3285/eg.07.1.01.
Map from 1729 AD:’ Karte der Elbe von Laase — Jasebeck (mit Gelän-de)’ [Map of the Elbe River at Laase-Jasebeck (with topography)], 1:15,000, mapped by Michaelsen, Hauptstaatsarchiv Hannover [Federal Archive of the State of Lower Saxony in Hanover, Germany], collection of maps: number 31 d/15 pg.
Map from 1775 AD:’ Kurhannoversche Landesaufnahme, 1:25.000, Blatt 75 Hitzacker’ [Topographic surveying of the Electorate of Brunswick-Lüneburg, 1:25,000, sheet 75 Hitzacker], Landesamt für Geoinformation und Landentwicklung Niedersachsen [Mapping agency of the State of Lower Saxony in Hanover, Germany].
Map from 1800 AD: ‘Plan des Elbstromes in den lüneburgischen Äm-tern Dannenberg u. Hitzacker und dem adeligen Gerichte Jase-beck, dem lauenburgischen Amte Neuhaus und dem adelichen Gerichte Wehningen’. [Map of the Elbe River in the districts Dan-nenberg & Hitzacker and the noble estate Jasebeck of the county of Lüneburg, the district of Neuhaus and noble estate Wehningen of the county of Lauenburg.] mapped 1799 and 1800, proofed 1803 by G.H. Buchholz, private collection of O.Puffahrt, Lüneburg (Germany).
Map from 1881 AD: ‘Preußische Landesaufnahme, 1:25.000, Blatt 2832 Dannenberg’, [Topographic surveying of Prussia, 1:25,000, sheet 2832 Dannenberg] Landesamt für Geoinformation und Landentwicklung Niedersachsen [Mapping agency of the State of Lower Saxony in Hanover, Germany].
Journals System - logo
Scroll to top