Record of the meso- and neoholocene palaeoenvironmental changes in the Jesionowa landslide peat bog (Beskid Sądecki MTS. Polish Outer Carpathians)
More details
Hide details
Institute of Nature Conservation, Polish Academy of Sciences, A. Mickiewicza Ave. 33, 31-120, Kraków, Poland
GADAM Centre of Excellence, Institute of Physics, Silesian University of Technology, Krzywoustego Str. 2, 44-100, Gliwice, Poland
Institute of Botany, Polish Academy of Sciences, Lubicz str. 46, 31-120, Kraków, Poland
Online publication date: 2011-03-20
Publication date: 2011-06-01
Geochronometria 2011;38(2):138-154
The paper presents an analysis of depositional sequences of landslide peat bog situated in the depressions developed within the landslide landforms Jesionowa in the Beskid Sądecki Mts. (Outer Carpathians). The peat bog, with depositional sequence 2.80 m long, started to form at the beginning of the Atlantic Phase ca. 6390–5910 cal BC. Palynological and lithological analyses as well as several (14) radiocarbon age determinations of different horizons in the sediments enabled the reconstruction of palaeoenvironmental changes during the Meso-and Neoholocene. The increase in climate humidity at the beginning of the Subboreal and Subatlantic Phases was observed as delivery of minerogenic material to the peat bog basin and formation of a mineral horizon and an illuvial level within the peat. The particularly intensive delivery of allochthonous material to the peat bog took place at the beginning of the Subboreal Phase and was the result of both significant humid climate and increased human impact (colonization of the Funnel Beaker Culture) in the landslide area. Similar influence of younger colonisations of landslide area (Przeworsk Culture and, later, Valachian colonisation) was also recorded within the deposits of peat bog (illuvial and mineral horizons) in the early Subatlantic Phase. Rejuvenation of the landslide zone and formation of the younger landslide were connected with the increase in climate humidity at the beginning of the Subboreal Phase. The peat bog deposits situated within this younger landslide, which are ca. 1.8 m thick, are significantly contaminated with mineral material.
Alexandrowicz SW, 1996. Stages of increased mass movements in the Carpathians during the Holocene. Kwartalnik AGH Geologia 22(3): 223–262 (in Polish, English summary).
Alexandrowicz SW, 1997. Holocene dated landslides in the Polish Carpathians. In: Frenzel B, ed., Rapid mass movement as a source of climatic evidence for the Holocene. Palaeoclimate Research 19: 75–83.
Ballantyne C, 2002. Debris flow activity in the Scottish Highlands: temporal trends and wider implications for dating. Studia Geomorphologica Carpatho-Balcanica 36: 7–27.
Battaglia S, Leoni L and Sartori F, 2003. Mineralogical and grain size composition of clays developing calanchi and biancane erosional landforms. Geomorphology 49(1–2): 153–170, DOI 10.1016/S0169-555X(02)00171-X.
Baumgart-Kotarba M and Kotarba A, 1993. Late Glacial and Holocene lacustrine sediments of the Lake Czarny Staw Gąsienicowy in the Tatra Mountains. Dokumentacja Geograficzna 4–5: 9–30 (in Polish, English summary).
Beug HJ, 2004. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Verlag Dr. Friedrich Pfeil. München: 542 pp (in German).
Birks HJB, 1979. Numerical methods for the zonation and correlation of biostratigraphical data. In: Berglund BE, ed, Palaeohydrological changes in the temperature zone in the last 15 000 years. IGCP 158B. Lake and environments. Project Guide 1, Lund: 99–123.
Birks HJB, 1986. Numerical zonation, comparison and correlation of Quaternary pollen-stratigraphical data. In: Berglund BE, ed., Handbook of Holocene Palaeoecology and Palaeohydrology. J. Wiley & Sons, Chichester: 743–774.
Bortenschlager S, 1982. Chronostratigraphic Subdivision of the Holocene in the Alps. Striae 16: 75–79.
Bronk Ramsey C, 2008. Deposition models for chronological records. Quaternary Science Reviews 27(1–2): 42–60, DOI 10.1016/j.quascirev.2007.01.019.
Bronk Ramsey C, 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1): 337–360.
Chrząstowski J, Nescieruk P and Wójcik A, 1995. Szczegółowa Mapa Geologiczna Polski 1: 50 000, arkusz Muszyna (Detailed Geological Map of Poland, 1:50 000, sheet Muszyna). PGI, Warszawa.
Dapples F, Lotter AF, Van Leeuwen JFN, Van Der Knapp WO, Dimitriadis S and Oswald D, 2002. Palaeolomnological evidence for increased landslide activity due to forest clearing and land-use since 3600 cal BP in the western Swiss Alps. Journal of Palaeolimnology 27(2): 239–248, DOI 10.1023/A:1014215501407.
Dikau R, Brunsden D, Schrott L and Ibsen ML, eds., 1996. Landslide recognition. Identification, Movement and Causes. J. Wiley & Sons: 251 pp.
Ellenberg H, 1996. Vegetation Mitteleuropas mit den Alpen. UTB für Wissenschaft, Ulmer, Stuttgart 5: 1095 pp (in German).
Erdtman G, 1943. An introduction to Pollen Analysis. Chronica Botanica, Waltham, Massachussets: 230 pp.
Faegri K and Iversen J, 1989. Textbook of Pollen Analysis. Munksgaard, Copenhagen: 328 pp.
Faliński B and Pawlaczyk P, 1995. Zarys ekologii (Outline of ecology). In: Bugała, ed., Jesion wyniosły. Fraxinus excelsior L. Nasze drzewa leśne. Monografie popularnonaukowe, Sorus, Poznań-Kórnik 17: 157–26 (in Polish, English summary).
Folk RI and Ward WC, 1957. Brazos River bar: a study in the significance of grain size parameters. Journal Sedimentary Petrology 27(1): 3–26.
Godłowski K and Kozłowski JK, 1979. Historia starożytna ziem polskich (Ancient history of the Polish Territory). PWN Warszawa, 1–168 (in Polish).
Hajdas I and Michczyński A, 2010. Age-depth model of Lake Soppensee (Switzerland) based on the high-resolution 14C chronology compared with varve chronology. Radiocarbon 52(3): 1027–1040.
Hormes A, Müller B and Schlüchter C, 2001. The Alps with little ice: evidence for eight Holocene phases of reduced glacier extent in the Central Swiss Alps. The Holocene 11(3): 255–265, DOI 10.1191/095968301675275728.
Heiri O, Lotter AF and Lemcke G, 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Palaeolimnology 25(1): 101–110, DOI 10.1023/A:1008119611481.
Janczyk-Kopikowa Z, 1987. Uwagi na temat palinostratygrafii czwartorzędu (Remarks on Palynostratigraphy of the Quaternary). Kwartalnik Geologiczny 31(1): 155–162 (in Polish).
Kadłubowska JZ, 1972. Chlorophyta v. Conjugales. Zygnemaceae Zrostnicowate. In: Starmach K and Siemińska J, eds., Flora słodkowodna Polski. Kraków, PWN, 12A: 432 pp (in Polish).
Kadrow S, 2001. On a Verge of a New Epoch: Central European Society and Economy in the Early Bronze Age. Instytut Archeologii i Etnologii PAN, Kraków: 1–313 (in Polish, English summary).
Klimek K, 1988. An early Anthropohenic Alluviation in the Subcarpathian Oświęcim Basin, Poland. Bulletin of the Polish Academy of Sciences, Earth Sciences 36(2): 159–169.
Kotarba A, 1996. Sedimentation rate in the High Tatra Lakes during the Holocene — geomorphic interpretation. Studia Geomorphologica Carpatho-Balcanica 30: 51–56.
Kozłowski JK and Kaczanowski P, 1998. Najdawniejsze dzieje ziem polskich (Earliest history of Polish terrotory). Wyd. Fogra, Kraków: 1–382 (in Polish).
Kruk J, 1993. Rozwój społeczno-gospodarczy i zmiany środowiska przyrodniczego wyżyn lessowych w neolicie (4800–3800 BC) (Social-economical development and changes of natural environment of the loess Uplands during the Neolithic 4800–3800 BC). Sprawozdania Archeologiczne 45: 7–17 (in Polish).
Kruk J and Milisauskas S, 1999. The Rise and Fall of Neolithic Societies Instytut Archeologii i Etnologii PAN, Kraków: 1–403 (in Polish with English summary).
Madyda-Legutko R, 1996. Zróżnicowanie kulturowe polskiej strefy beskidzkiej w okresie lateńskim i rzymskim (Cultural diversity of Polish Beskidy Zone during La Tene and Roman Periods). Wydawnictwa Uniwersytetu Jagiellońskiego, Kraków: 166 pp. (in Polish, German summary).
Magny M, 1993. Holocene fluctuation of lake levels in the French Jura and sub-Alpine ranges, and their implications for past general circulation pattern. The Holocene 3(4): 306–313, DOI 10.1177/095968369300300402.
Magny M, 2004. Holocene climatic variability as reflected by mid European lake-level fluctuation and its probable impact on prehistoric human settlements. Quaternary International 113(1): 65–79, DOI 10.1016/S1040-6182(03)00080-6.
Makra L, Juhász M, Béczi R and Borsos E, 2005. The history and impacts of airborne Ambrosia (Asteraceae) pollen in Hungary. Grana 44: 57–64, DOI 10.1080/00173130510010558.
Mangerud J, Andersen ST, Berglund BE and Donner J, 1974. Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas 3(3):109–126, DOI 10.1111/j.1502-3885.1974.tb00669.x.
Margielewski W, 1997a. Dated landslides of the Jaworzyna Krynicka Range (Polish Outer Carpathians) and their relation to climatic phases of the Holocene. Annales Societatis Geologorum Poloniae 67: 83–92.
Margielewski W, 1997b. Landslide forms of the Jaworzyna Krynicka Range and their connection with the geological structure of the region. Kwartalnik AGH, Geologia 23(1): 45–102 (in Polish, English summary).
Margielewski W, 1998. Landslide phases in the Polish Outer Carpathians and their relation to climatic changes in the Late Glacial and the Holocene. Quaternary Studies in Poland 15: 37–53.
Margielewski W, 2000. Economical role of the landslides in the Beskid Makowski Mts. Problemy Zagospodarowania Ziem Górskich 46: 15–34 (in Polish, English summary).
Margielewski W, 2006a. Records of the Late Glacial-Holocene palaeoenvironmental changes in landslide forms and deposits of the Beskid Makowski and Beskid Wyspowy Mts. area (Polish Outer Carpathians). Folia Quaternaria 76: 1–149.
Margielewski W, 2006b. Structural control and types of movements of rock mass in anisotropic rocks: case studies in the Polish Flysch Carpathians. Geomorphology 77(1–2): 47–68, DOI 10.1016/j.geomorph.2006.01.003.
Margielewski W and Zernitskaya V, 2003. Late Glacial-Holocene palaeoenvironmental evidence recorded in the Hajduki peat bog (Beskid Średni Mts, Outer Western Carpathians). Folia Quaternaria 74: 57–73.
Margielewski W, Obidowicz A and Pelc S, 2003. Late Glacial — Holocene peat bog on Kotoń Mt. and its significance for reconstruction of palaeoenvironment in the Western Carpathians (the Beskid Makowski Range, South Poland). Folia Quaternaria 74: 35–56.
Margielewski W, Michczyński A, Obidowicz A, 2010a. Records of the middle and late Holocene palaeoenvironmental changes in the Pcim-Sucha landslide peat bogs (Beskid Makowski Mts., Polish Outer Carpathians). Geochronometria 35: 11–23, DOI 10.2478/v10003-010-0009-1.
Margielewski W, Krąpiec M, Valde-Nowak P and Zernitskaya V, 2010b. A Neolithic yew bow in the Polish Carpathians. Evidence of the impact of human activity on mountainous palaeoenvironment from the Kamiennik landslide peat bog. Catena 80(1): 141–153, DOI 10.1016/j.catena.2009.11.001.
Michczyńska DJ and Pazdur A, 2004. Shape Analysis of Cumulative Probabilisty Density Function of Radiocarbon Dates Set in the Study of Climate Change in the Late Glacial and Holocene. Radiocarbon 46: 733–744.
Michczyński A, 2011 (in press). Chronologie bezwzględne na podstawie datowania radiowęglowego (Absolute chronologies constructed on the basis of radiocarbon dating). (in Polish).
Mycielska-Dowgiałło E and Rutkowski J, eds., 1995. Researches of Quaternary sediments. Some methods and interpretation of the results. Warszawa, Wydział Geografii i Studiów Regionalnych UW: 356 pp. (in Polish).
Nalepka D and Walanus A, 2003. Data processing in pollen analysis. Acta Palaeobotanica 43(1): 125–134.
Oberdorfer E, 1990. Pflanzensoziologiche Exkursionsflora. 6th ed. Verlag Eugen Ulmer, Stuttgart: 1050 pp (in German).
Obidowicz A and Margielewski W, 2008. Problematyka klasyfikacji torfowisk górskich (Problems of mountainous peat bogs classification). In: Żurek S, ed., Torfowiska gór i Wyżyn. Uniwersytet im. J. Kochanowskiego, Kielce:103–109 (in Polish).
Page CN, 1986. The strategies of bracken as a permanent ecological opportunist. In: Smith RT and Taylor JA, eds., Bracken, ecology, land use and control technology, 1985 July 1–July 5, The Parthenon Publishing Group Limited, Leeds, England, Lancs: 173–181.
Pánek T, Hradecký J, Smolková V, Šilhán K, Minár J and Zernitskaya V, 2010. The largest prehistoric landslide in northwestern Slovakia: Chronological constrains of the Kykula long-runout landslide and related dammed lakes. Geomorphology 120(3–4): 233–24 DOI 10.1016/j.geomorph.2010.03.033.
Pettijohn FJ, 1975. Sedimentary Rocks. 3rd ed. New York, Harper and Row: 628 pp.
Pietrzak M, 2002. The impact of land-use change on ground relief in the Wiśnickie Foothills, Southern Poland. In: Przemiany środowiska na Pogórzu Karpackim, vol. 2. Instytut Geografii i Gospodarki Przestrzennej, Uniwersytet Jagielloński, Kraków: 1–149 (in Polish, English summary).
Pohl F, 1937. Die Pollenerzeugung der Windblütter. Beihefte des Botanischen Centralblattes 55A: 365–471 (in German).
Ralska-Jasiewiczowa M, ed., 1989. Environmental changes recorded in lakes and mires of Poland during the last 13000 years, Part III. Acta Palaeobotanica 29: 1–120.
Reille M, 1992. Pollen et spores d’Europe et d’Afrique du Nord. Laboratoire de Botanique Historique et Palynologie, Marseille: 543 pp (in French).
Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J and Weyhenmeyer CE, 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4): 1111–1150.
Soldati M, Corsini A and Pasuto A, 2004. Landslides and climate change in the Italian Dolomites since the Late Glacial. Catena 55(2): 141–161, DOI 10.1016/S0341-8162(03)00113-9.
Starkel L, 1977. Palaeogeografia holocenu (Holocene’s palaeogeography). PWN Warszawa, pp. 1–362 (in Polish).
Starkel L, 1988. Man’s activity as a cause of changes of denudation and sedimentation processes in the Holocene. Przegląd Geograficzny 60: 251–265 (in Polish, English summary).
Starkel L, 1989. The evolution of natural environment of Carpathian Mts. During the human management. Problemy Zagospodarowania Ziem Górskich 29: 35–45.
Starkel L, 1990. Holocene as interglacial- problems of stratigraphy. Przegląd Geologiczny 38: 13–16 (in Polish, English summary).
Starkel L, 1997. Mass movement during the Holocene: Carpathian example and the European perspective. In: Frenzel B, ed., Rapid mass movement as a source of climatic evidence for the Holocene. Palaeoclimate Research 19: 385–400.
Starkel L, 1999. Chronostratigraphy of Late Vistulian and Holocene in Poland. In: Pazdur A, Bluszcz A, Stankowski A and Starkel L, eds., Geochronologia górnego czwartorzędu Polski, w świetle datowania radiowęglowego i luminescencyjnego, WIND, Wrocław: 280–283 (in Polish).
Starkel L, 2002. Change in the frequency of extreme events as the indicator of climate change in the Holocene (in fluvial systems). Quaternary International 91(1): 25–32, DOI 10.1016/S1040-6182(01)00099-4.
Starkel L, Kalicki T, Krąpiec M, Soja R, Gębica P and Czyżowska E, 1996. Hydrological changes of valley floor in the Upper Vistula Basin during Late Vistulian and Holocene. In: Starkel L, ed., Evolution of the Vistula river Valley during the last 15 000 years, p. IV, Geographical Studies Special Issue 9: 1–128.
Starkel L, Soja R and Michczyńska DJ, 2006. Past hydrological events reflected in Holocene history of Polish Rivers. Catena 66(1–2): 24–33, DOI 10.1016/j.catena.2005.07.008.
Stockmarr J, 1971. Tabletes with spores used in absolute pollen analysis. Pollen et Spores 13(4): 615–621.
Tobolski K and Nalepka D, 2004. Fraxinus excelsior L. — Ash. In: Ralska-Jasiewiczowa M, Latałowa M, Wasylikowa K, Tobolski K, Madeyska E, Wright HE, Jr and Turner C, eds., Late Glacial and Holocene history of vegetation in Poland based on isopollen maps. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków: 105–110.
Toney JL and Anderson RS, 2006. A postglacial palaeoecological record from the San Juan Mountains of Colorado USA: fire, climate and vegetation history. The Holocene 16(4): 505–517, DOI 10.1191/0959683606hl946rp.
Valde-Nowak P, 1988. Etapy i strefy zasiedlania Karpat polskich w neolicie i na początku epoki brązu (Stages of colonisation of the Polish Carpathians in the Neolithic and Early Bronze eppochs). Zakład Narodowy im. Ossolińskich, Wrocław (in Polish).
Valde-Nowak P, 2000. Dzieje osadnictwa (History of settlement) In: Staszkiewicz J, Alexandrowicz Z, Wieczorek T and Witkowski Z, eds., Przyroda Popradzkiego Parku Krajobrazowego: 81–90. Popradzki Park Krajobrazowy Publ. Stary Sącz 2000. (in Polish).
Valde-Nowak P, 2001. Etapy i strefy w badaniach nad neolitem w polskich Karpatach (Stages and Zonation of researches of Neolithic of the Polish Carpathians). In: Gancarski J, ed., Neolit i początki epoki brązu w Karpatach Polskich, Krosno: 89–106.
Van Geel B, 1978. A palaeoecological study of Holocene peat bog section in Germany and The Netherlands, based on the analysis of pollen, spores and macro- and microscopic remains of fungi, algae, coprophytes and animals. Review Palaeobotany and Palynology 25(1): 1–120, DOI 10.1016/0034-6667(78)90040-4.
Van Geel B, 2001. Non-pollen palynomorphs. In: Smol JP, Birks HJB and Last WM, eds., Tracking Environmental Change Using Lake Sediments, Volume 3: Terrestrial, Algal and Siliceous Indicators. Kluver Academic Publishers, Dordrecht, The Netherlands: 99–119.
Van Geel B, Bohnecke SJP and Dee H, 1980. A palaeoecological study of an upper Late Glacial and Holocene sequence from “De Borchert”, The Netherlands. Review Palaeobotany and Palynology 31: 367–448, DOI 10.1016/0034-6667(80)90035-4.
Van Geel B and Andersen ST, 1988. Fossil ascospores of the parasitic fungus Ustulina deusta in Eemian deposits in Denmark. Review-Palaeobotany and Palynology 56(1–2): 89–93, DOI 10.1016/0034-6667(88)90076-0.
Van Geel B, Buurman J, Brinkkemper O, Schelvis J, Aptroot A, Van Reenen G and Hakbijl T, 2003. Environmental reconstruction of a Roman Period settlement site in Utigeest (The Netherlands), with special reference to coprophilous fungi. Journal of Archaeological Science 30(7): 873–883, DOI 10.1016/S0305-4403(02)00265-0.
Van Geel B, Zazula GD and Schweger CE, 2007. Spores of coprophilous fungi from under the Dawson tephra (25,300 14C years BP), Yukon Territory, northwestern Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 252(3–4): 481–485, DOI 10.1016/j.palaeo.2007.04.017.
Walanus A and Nalepka D, 1999. POLPAL. Program for counting pollen grains, diagrams plotting and numerical analysis. Acta Palaeobotanica, Suppl. 2: 659–661.
Walanus A and Nalepka D, 2005. The calendar age of boundaries arbitrarily determined on the radiocarbon timescale. Botanical Guidebooks 28: 313–321 (in Polish, English summary).
Wentworth CK, 1922. A scale of grade and class terms for clastic sediments. Journal of Geology 30: 377–392.
Żurek S and Pazdur A, 1999. Zapis zmian palaeohydrologicznych w rozwoju torfowisk Polski (Records of palaeohydrological changes in peat bogs of Polish Territory). In: Pazdur A, Bluszcz A, Stankowski A and Starkel L, eds., Geochronologia górnego czwartorzędu Polski, w świetle datowania radiowęglowego i luminescencyjnego, WIND, Wrocław: 215–228 (in Polish).
Żurek S, Michczyńska D, Pazdur A, 2002. Time record of palaeohydrological changes in the development of mires during the Late Glacial and Holocene, North Podlasie and Holy Cross Mts. Geochronometria 21: 109–118.
Journals System - logo
Scroll to top