The thermoluminescence of meteorites: A brief 2010 perspective
More details
Hide details
Arkansas Center for Space and Planetary Sciences and Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, 72701, USA
Online publication date: 2011-06-19
Publication date: 2011-09-01
Geochronometria 2011;38(3):303-313
Early work on meteorite thermoluminescence, influenced by pottery dating and dosimetry applications, demonstrated a relationship between natural thermoluminescence and (1) the orbital perihelion of a meteorite and (2) the terrestrial age (time since fall) of a meteorite. For 14 years natural TL measurements were routinely made on newly recovered Antarctic meteorites to help identify unusual thermal and radiation histories, and to sort them by terrestrial age and perihelion. Two examples of the value of such data are presented, an Antarctic meteorite that underwent a major orbit change prior to fall and the collection mechanics of meteorites at the Lewis Cliff collection site. A second major area of focus for meteorite TL, that has no non-meteorite heritage, is the use of their induced TL to provide an extraordinarily sensitive and quantitative means of exploring metamorphic intensity and palaeothermometry. While especially valuable for unequilibrated ordinary chondrites, these types of measurement have proved useful with virtually every major class of meteorite, asteroidal and planetary. The challenge now is to extend the technique to small particles, micrometeorites, interplanetary dust particles, and cometary particles.
Akridge JMC, Benoit PH, and Sears DWG, 2000. Terrestrial age measurements using natural thermoluminescence of a drained zone under the fusion crust of Antarctic ordinary chondrites. Meteoritics and Planetary Science 35(4): 869–874, DOI 10.1111/j.1945-5100.2000.tb01470.x.
Akridge JMC, Benoit PH, and Sears DWG, 2001. Determination of trapping parameters of the high temperature thermoluminescence peak in equilibrated ordinary chondrites. Radiatiation Measurements 33(1): 109–117, DOI 10.1016/S1350-4487(00)00112-8.
Akridge DG, Akridge JMC, Batchelor JD, Benoit PH, Brewer J, DeHart JM, Keck BD, Jie Lu, Meier A, Penrose M, Schneider DM, Sears DWG, Symes SJK, Yanhong Zhang, 2004. Photomosaics of the cathodoluminescence of 60 sections of meteorites and lunar samples. Journal of Geophysical Research 109: E07S03, DOI 10.1029/2003JE002198.
Batchelor JD and Sears DWG, 1991a. Metamorphism of eucrite meteorites studied quantitatively using thermoluminescence. Nature 349(6309): 516–519, DOI 10.1038/349516a0.
Batchelor JD and Sears DWG, 1991b. Thermoluminescence constraints on the metamorphic, shock and brecciation history of basaltic meteorites. Geochimica Cosmochimica Acta 55: 3831–3844.
Batchelor JD, Symes SJK, Benoit PH and Sears DWG, 1997. Constraints on the thermal and mixing history of lunar surface materials and comparisons with basaltic meteorites. Journal of Geophysical Research 102(E8): 19321–19334, DOI 10.1029/97JE01688.
Benoit PH and Sears DWG, 1992. The breakup of a meteorite parent body and the delivery of meteorites to Earth. Science 255(5052): 1685–1687, DOI 10.1126/science.255.5052.1685.
Benoit PH and Sears DWG, 1993a. Breakup and structure of an H-chondrite parent body: The H-chondrite flux over the last million years. Icarus 101(2): 188–200, DOI 10.1006/icar.1993.1017.
Benoit PH and Sears DWG, 1993b. A recent meteorite fall in Antarctic with an unusual orbital history. Earth and Planetary Science Letters 120(3–4): 463–471, DOI 10.1016/0012-821X(93)90257-A.
Benoit PH and Sears DWG, 1996. Rapid changes in the composition of the meteorite flux: The irradiation, orbital, and terrestrial history of Antarctic H chondrites and modern falls. Meteoritics and Planetary Science 31: 81–86.
Benoit PH and Sears DWG, 1997. Orbits of meteorites from Natural TL. Icarus 125(2): 281–287, DOI 10.1006/icar.1996.5622.
Benoit PH and Sears DWG, 1999. Accumulation mechanisms and the weathering of Antarctic equilibrated ordinary chondrites. Journal of Geophysical Research — Planets 104(E6): 14159–14168, DOI 10.1029/1999JE900015.
Benoit PH, Sears DWG and McKeever SWS, 1991. The natural thermoluminescence of meteorites — II. Meteorite orbits and orbital evolution. Icarus 94(2): 311–325, DOI 10.1016/0019-1035(91)90230-Q.
Benoit PH, Sears H. and Sears DWG, 1992. The natural thermoluminescence of meteorites — IV: Ordinary chondrites at the Lewis Cliff ice field. Journal of Geophysical Research 97(B4): 4629–4647, DOI 10.1029/91JB02982.
Benoit PH, Jull AJT, Mckeever SWS and Sears DWG, 1993a. The natural thermoluminescence of meteorites VI: Carbon-14, thermoluminescence and the terrestrial ages of meteorites. Meteoritics 28: 196–203.
Benoit PH, Sears DWG and McKeever SWS, 1993b. Natural thermoluminescence and terrestrial ages of meteorites from a variety of temperature regimes. Radiation Detection and Dosimetry 47(1–4): 669–674.
Benoit PH, Sears H and Sears DWG, 1993c. The natural thermoluminescence of meteorites — V: Ordinary chondrites at the Allan Hills vicinity. Journal of Geophysical Research 98(B2): 1875–1888, DOI 10.1029/92JB02049.
Benoit PH, Roth J, Sears H and Sears DWG, 1994. The natural thermoluminescence of meteorites 7: Ordinary chondrites from the Elephant Moraine region, Antarctica. Journal of Geophysical Research — Planets 99(E1): 2073–2085, DOI 10.1029/93JE02474.
Benoit PH, Sears DWG and Symes SJK, 1996. The thermal and radiation exposure history of lunar meteorites. Meteoritics and Planetary Science 31: 869–875.
Bevan AWR and Binns RA, 1989. Meteorites from the Nullarbar region, Western Australia: I. Review of past recoveries and a procedure for naming new finds. Meteoritics 24: 127–133.
Bhandari N, 1985. Thermal and radiation history of meteorites as revealed by their thermoluminescence records. Nuclear Tracks and Radiation Measurements 10(1–2): 269–273, DOI 10.1016/0735-245X(85)90036-5.
Bhandari N, Lal D, Rajan RS, Arnold JR, Marti K and Moore CB, 1980. Atmospheric ablation in meteorites: A study based on cosmic ray tracks and neon isotopes. Nuclear Tracks 4(4): 213–262, DOI 10.1016/0191-278X(80)90037-2.
Biswas RH, 2009. Investigation on the relationship of natural luminescence in meteorite with cosmic ray exposure age. In: Second Asia-Pacific Luminescence and Electron Spin Resonance dating Conference APLED-2. Ahmedabad, Nov. 12–15, 2009.
Boeckl R, 1972. Terrestrial Age of Nineteen Stony Meteorites derived from their Radiocarbon. Nature 236(5340): 25–26, DOI 10.1038/236025a0.
Bottke WF, Vokrouhlický D, Rubicam DP and Nesvorný D, 2006. The Yarkovsky and YORP effects: Implications for asteroid dynamics. Annual Reviews of Earth and Planetary Science 34: 157–191, DOI 10.1146/
Cassidy WA, 1990. A general description of the Lewis Cliff Ice Tongue. In: Cassidy WA and Whillans IM, eds., Workshop on Antarctic meteorite stranding surfaces, LPI Tech. Rep. 90–93, Lunar and Planetary Institute, Houston, Texas: 26–27.
Cassidy WA, 2003. Meteorites, Ice, and Antarctica: A Personal Account. Cambridge University Press: 364 pp.
Cassidy WA, Olsen E and Yanai K, 1977. Antarctica — A deep-freeze storehouse for meteorites. Science 198(4318): 727–731, DOI 10.1126/science.198.4318.727.
Cassidy W, Harvey Ralph, Schutt John, Delisle G, Yanai Keizo, 1992. The meteorite collection sites of Antarctica. Meteoritics 27: 490–525.
Craig JP and Sears DWG, 2009. The fine-grained matrix of the Semarkona LL3.0 ordinary chondrite: An induced thermoluminescence study. Meteoritics and Planetary Science 44(5): 643–652, DOI 10.1111/j.1945-5100.2009.tb00760.x.
Craig JP and Sears DWG, 2010. Natural and induced thermoluminescence data for twenty-five 10–15 μm particles form the LL3.0 ordinary chondrite Semarkona: Implications for the narture and history of primitive solar system material. In: Lunar and Planetary Science Conference: abstract no. 1401.
Crovisier J, Leech K, Bockelée-Morvan D, Brooke TY, Hanner MS, Altieri B, Keller HU and Lellouch E, 1997. The spectrum of Comet Hale-Bopp (C/1995 01) observed with the Infrared Space Observatory at 2.9 astronomical units from the sun. Science 275(5308): 1904–1907, DOI 10.1126/science.275.5308.1904.
Dennison JF and Lipschutz ME, 1987. Chemical studies of H chondrites. II. Weathering effects in the Victoria Land, Antarctica, populations and comparison of two Antarctic populations with non-Antarctic falls. Geochimica Cosmochimica Acta 51: 741–754.
Dodd RT, Van Schmus WR and Koffman DM, 1967. A survey of the unequilibrated ordinary chondrites. Geochimica et Cosmochimica Acta: 31(6), 921–951, DOI 10.1016/0016-7037(67)90071-3.
Eugster O, Herzog GF, Marti K and Caffee MW, 2006. Irradiation Records, Cosmic-Ray Exposure Ages,and Transfer Times of Meteorites. In: Laurette D. and McSween HY, eds., Meteorites and the Early Solar System II: 829–851.
Garlick GGJ, 1949. Luminescent materials. Clarendon Press: 254pp.
Grady MM, Swart PK and Pillinger CT, 1982. The variable carbon isotopic composition of type 3 ordinary chondrites. Journal of Geophysical Research 87(S1): A289–A296, DOI 10.1029/JB087iS01p0A289.
GRL, 1983. Geophysical Research Letters 10: 773–840.
Grossman JN and Brearley AJ, 2005. The onset of metamorphism in ordinary and carbonaceous chondrites. Meteoritics and Planetary Science 40(1): 87–122, DOI 10.1111/j.1945-5100.2005.tb00366.x.
Grün E, Gustafson BAS, Dermott S and Fechtig H. (Eds.), 2001. Inter-planetary dust. Berlin, Springer: 804pp.
Guimon RK, Weeks KS, Keck BD and Sears DWG, 1984. Thermoluminescence as a palaeothermometer. Nature 311(5984): 363–365, DOI 10.1038/311363a0.
Guimon RK, Keck BD and Sears DWG, 1985. Chemical and physical studies of type 3 chondrites — IV: Annealing studies of a type 3.4 ordinary chondrite and the metamorphic history of meteorites. Geochimica et Cosmochimica Acta 49(7): 1515–1524, DOI 10.1016/0016-7037(85)90256-X.
Haq M, Hasan FA and Sears DWG, 1988. Thermoluminescence and the shock and reheating history of meteorites — IV: The induced TL properties of type 4–6 ordinary chondrites. Geochimica et Cosmochimica Acta 52(6): 1679–1689, DOI 10.1016/0016-7037(88)90236-0.
Harvey EN, 2005. A History of Luminescence: From the Earliest Times Until 1900. Dover Books: 692pp.
Hasan FA, Haq M and Sears DWG, 1986. Thermoluminescence and the shock and reheating history of meteorites — III: The shergottites. Geochimica et Cosmochimica Acta 50(6): 1031–1038, DOI 10.1016/0016-7037(86)90384-4.
Hasan FA, Haq M and Sears DWG, 1987. Natural thermoluminescence levels in meteorites, I: 23 meteorites of known Al-26 content. Journal of Geophysical Research 92(B4): E703–E709, DOI 10.1029/JB092iB04p0E703.
Heiken GH, Vaniman DT and French BM, 1991. Lunar Sourcebook — A user’s guide to the moon. Cambridge University Press: 753pp.
Herschel AS, 1899. Triboluminescence. Nature 60(1541): 29–29, DOI 10.1038/060029b0.
Heymann D, 1967. Origin of hypersthene chondrites: Ages and shock effects of black chondrites. Icarus 6(1–3): 189–221, DOI 10.1016/0019-1035(67)90017-6.
Houtermans FG and Liener A, 1966. Thermoluminescence of meteorites. Journal of Geophysical Research 71(14): 3387–3396, DOI 10.1029/JZ071i014p03387.
Howard EC, 1802. Experiments and observations on certain stony substances, which at different times are said to have fallen on the Earth; also on various kinds of native iron. Philosophical Transactions of the Royal Society 92: 168–212, DOI 10.1098/rstl.1802.0009.
Huss GR, 1990. Ubiquitous interstellar diamond and SiC in primitive chondrites — Abundances reflect metamorphism. Nature 347(6289): 159–162, DOI 10.1038/347159a0.
Jull AJT, Donahue DJ and Linick TW, 1980. Carbon-14 activities in recently fallen meteorites and Antarctic meteorites. Geochimica et Cosmochimica Acta 53(8): 2095–2100, DOI 10.1016/0016-7037(89)90327-X.
Keil K, 2002. Geological history of asteroid 4 Vesta: the “smallest terrestrial planet”. In: Bottke W, Cellino A, Paolicchi P and Binzel RP, eds., Asteroids III. Arizona LPI Publishing: 573–585.
Kloeck W, Thomas KL, McKay DS, Palme H, 1989. Unusual olivine and pyroxene composition in interplanetary dust and unequilibrated ordinary chondrites. Nature 339(6220): 126–128, DOI 10.1038/339126a0.
Koeberl C and Cassidy WA, 1991. Differences between Antarctic and non-Antarctic meteorites: An assessment. Geochimica et Cosmochimica Acta 55(1): 3–18, DOI 10.1016/0016-7037(91)90395-L. K
Koike C, Chihara H, Koike K, Nakagawa M, Okada M, Tsuchiyama A, Aoki M, Awata T and Atobe K, 2002. Thermoluminescence of forsterite and fused quartz as a candidate for the extended red emission. Meteoritics and Planetary Science 37(11): 1591–1598, DOI 10.1111/j.1945-5100.2002.tb00813.x.
Komovsky GF, 1961. Thermoluminescence of stony meteorites. Meteoritika 21: 64–69 (In Russian).
Korotev R, 2005. Lunar geochemistry as told by lunar meteorites. Chemie der Erde — Geochemistry 65(4): 297–346, DOI 10.1016/j.chemer.2005.07.001.
Lalou C, Nordemann D and Labyrrie J, 1970. Etude préliminaire de la thermoluminescence de la meteorite. Saint-Severin. Comptes rendus de l’Académie des Sciences, Paris Ser. D 270: 2401 (In French).
Liener A and Geiss J, 1968. Thermoluminescence measurements on chondritic meteorites. In: McDougall DJ, ed., Thermoluminescence of Geological Materials, Academic Press, NY: 559–528.
McKeever SWS, 1980. The analysis of glow curves from meteorites. Modern Geology 7: 105–114.
McKeever SWS and Sears DW, 1980. Natural thermoluminescence of meteorites — A pointer to orbits? Modern Geology 7: 137–145.
McKie D and McConnell JDC, 1963. The kinetics of the low-high transformation in albite. I. Amelia albite under dry conditions. Mineralogical Magazine 33: 581–588.
McNaughton NJ, Fallick AE and Pillinger CT, 1982. Deuterium enrichments in type 3 ordinary chondrites. Journal of Geophysical Research 87(S1): A297–A302, DOI 10.1029/JB087iS01p0A297.
Melcher CM, 1981a. Thermoluminescence of meteorites and their terrestrial ages. Geochimica et Cosmochimica Acta 45(5): 615–626, DOI 10.1016/0016-7037(81)90036-3.
Melcher CL, 1981b. Thermoluminescence of meteorites and their orbits. Earth and Planetary Science Letters 52(1): 39–54, DOI 10.1016/0012-821X(81)90206-5.
Michel R, Leya I and Borges L, 1996. Production of cosmogenic nuclides in meteoroids: Accelerator experiments and model calculations to decipher the cosmic ray record in extraterrestrial matter. Nuclear Instruments and Methods in Physics, Research Section B 113(1–4): 434–444, DOI 10.1016/0168-583X(95)01345-8.
Milton DJ and de Carli PS, 1963. Maskelynite: Formation by Explosive Shock. Science 140(3567): 670–671, DOI 10.1126/science.140.3567.670.
Nesvorný D, Ferraz-Mello S, Holman M, and Morbidelli A, 2002. Regular and chaotic dynamics in the mean-motion resonances: Implications for the structure and evolution of the asteroid belt. In: Bottke WF, Cellino A, Paolicchi P and Binzel RP, eds., Asteroids III. Tucson, University of Arizona Press: 379–394.
Ninagawa K, Hoshikawa Y, Kojima H, Matsunami S, Benoit PH and Sears DWG, 1998. Thermoluminescence of Japanese Antarctic ordinary chondrite collection. Antarctic Meteorite Research 11: 1–17.
Ninagawa K, Soyama K, Ota M, Toyoda S, Imae N, Kojima H, Benoit PH and Sears DWG, 2000. Thermoluminescence studies of ordinary chondrites in the Japanese Antarctic meteorite collection, II: New measurements for thirty type 3 ordinary chondrites. Antarctic Meteorite Research 13: 112–120.
Nishiizumi K, Nagai H, Imamura M, Honda M, Kobayashi K, Kubik PW, Sharma P, Wieler R, Signer P, Goswami JN, Sinha N, Reedy RC, Arnold JR, 1990. Solar cosmic ray produced nuclides in the Salem meteorite. Meteoritics 25: 392–392.
Otto J, 1992. New meteorite finds from the Algerian Sahara Desert. Chemie der Erde 52: 33–40.
Papike JJ, Karner JM, Shearer CK, and Burger PV, 2009. Silicate mineralogy of martian meteorites. Geochimica et Cosmochimica Acta 73(24): 7443–7485, DOI 10.1016/j.gca.2009.09.008.
Pasternak ES, 1978. Thermoluminescence of ordered and thermally disordered albite. Ph.D. Thesis, University of Pennsylvania, PA: 326pp.
Pasternak ES, Gaines AM, and Levy PW, 1976. Thermoluminescence of ordered and disordered albites. Geological Society of America, Abstracts with program 8: 1044.
Sears DW, 1975a. Thermoluminescence studies and the preatmospheric shape and mass of the Estacado meteorite. Earth and Planetary Science Letters 26(1): 97–104, DOI 10.1016/0012-821X(75)90181-8.
Sears DW, 1975b. Temperature gradients in meteorites produced by heating during atmospheric passage. Modern Geology 5: 155–164.
Sears DW, 1980. Thermoluminescence of meteorites; relationships with their K-Ar age and their shock and reheating history. Icarus 44(1): 190–206, DOI 10.1016/0019-1035(80)90065-2.
Sears DW and Durrani SA, 1980. Thermoluminescence and the terrestrial age of meteorites: Some recent results. Earth and Planetary Science Letters 46(2): 159–166, DOI 10.1016/0012-821X(80)90002-3.
Sears DWG and Hasan FA, 1986. Thermoluminescence and Antarctic meteorites. In: Annexstad JO, Schultz L and Wanke H, eds., Proceedings of the 2nd Workshop on Antarctic Meteorites. 83–100. LPI Technical Rept. 86-01. Lunar and Planetary Institute, Houston.
Sears DW and Mills AA, 1974. Thermoluminescence and the terrestrial age of meteorites. Meteoritics 9: 47–67.
Sears DWG, Grossman JN, Melcher CL, Ross LM and Mills AA, 1980. Measuring metamorphic history of unequilibrated ordinary chondrites. Nature 287(5785): 791–795, DOI 10.1038/287791a0.
Sears DWG, Lu Jie, Keck BD and Batchelor JD, 1991a. Metamorphism of CO and CO-like chondrites and comparisons with type 3 ordinary chondrites. Proceedings of the National Institute of Polar Research Symposium on Antarctic Meteorites 4: 1745–1805.
Sears DWG, Benoit PH and Batchelor JD, 1991b. Evidence for differences in the thermal histories of Antarctic and non-Antarctic H chondrites with cosmic ray exposure ages <20 Ma. Geochimica et Cosmochimica Acta 55(4): 1193–1197, DOI 10.1016/0016-7037(91)90178-8.
Sears DWG, Symes SP, Guimon RK and Benoit PH, 1995. Chemical and physical studies of type 3 chondrites XII: The metamorphic history of CV chondrites and their components. Meteoritics 30: 707–714.
Sears DWG, Symes SJK, Akridge DG, Batchelor JD and Benoit PH, 1997. The metamorphic history of eucrites and eucrite-related meteorites and the case for late metamorphism. Meteoritics and Planetary Science 32(6): 917–927, DOI 10.1111/j.1945-5100.1997.tb01581.x.
Sears DWG, Yozzo J and Ragland C, 2011. The natural thermoluminescence of Antarctic meteorites and their terrestrial ages and orbits: A 2010 update. Meteoritics and Planetary Science 46(1): 79–91, DOI 10.1111/j.1945-5100.2010.01139.x.
Sedaghatpour F and Sears DWG, 2009. Characterization of Antarctic micrometeorites by thermoluminescence. Meteoritics and Planetary Science 44: 653–664, DOI 10.1111/j.1945-5100.2009.tb00761.x.
Sen Gupta D, Bhandari N and Watanabe S, 1997. Terrestrial ages of Antarctic meteorites based on the thermoluminescence levels induced in the fusion crust. Brazilian Journal of Physics 27(3), DOI 10.1590/S0103-97331997000300001.
Sen Gupta D, Bhandari N and Watanabe S, 1997. Formation age of Lonar Meteor Crater, India. Revista de Física Aplicada e Instrumentação 12: 1–7.
Singhvi AK, Pal S and Bhandari N, 1982. Ablation characteristics of meteorites based on thermoluminescence and track Studies. PACT 6: 404, 1982.
Sipiera PP, Becker MJ, and Kawachi Y, 1987. Classificiation of 26 chondrites from Roosevelt County, New Mexico. Meteoritics 22: 151–155.
Steele IM, 1986. Compositions and textures of relic forsterite in carbonaceous and unequilibrated ordinary chondrites. Geochimica et Cosmochimica Acta 50(7): 1379–1395, DOI 10.1016/0016-7037(86)90312-1.
Stöffler D, Bischoff A, Buchwald V and Rubin AE, 1988. Shock effects in meteorites. In: Kerridge JF and Matthews MS, eds., Meteorites and the Early Solar System, Univ. of Arizona, Tucson: 165–202.
Stöffler D, Keil K and Scott ERD, 1991. Shock metamorphism of ordinary chondrites. Geochimica et Cosmochimica Acta 55(12): 3845–3867, DOI 10.1016/0016-7037(91)90078-J.
Sutton SR, 1985a. Thermoluminescence measurements on shock-metamorphosed sandstone and dolomite from meteor crater, Arizona. I — Shock dependence of thermoluminescence properties. Journal of Geophysical Research 90(B5): 3683–3689, DOI 10.1029/JB090iB05p03683.
Sutton SR, 1985b. Thermoluminescence measurements on shock-metamorphosed sandstone and dolomite from meteor crater, Arizona. II Thermoluminescence age of meteor crater. Journal of Geophysical Research 90(B5): 3690–3700, DOI 10.1029/JB090iB05p03690.
Sutton SR and Crozaz G, 1983. Thermoluminescence and nuclear particle tracks in ALHA-81005 Evidence for a brief transit time. Geophysical Research Letters 10(9): 809–812, DOI 10.1029/GL010i009p00809.
Sutton SR and Walker RM, 1986. Thermoluminescence of Antarctic meteorites: A rapid screening technique for terrestrial age estimation, pairing studies and identification of specimens with unusual prefall histories. In: Lunar and Planetary Inst. International Workshop on Antarctic Meteorites: 104–106.
Van Schmus WR and Wood JA, 1967. A chemical-petrologic classification for the chondritic meteorites. Geochimica et Cosmochimica Acta 31(5): 747–765, DOI 10.1016/S0016-7037(67)80030-9.
Vaz JE, 1971. Asymmetric distribution of thermoluminescence in the Ucera meteorite. Nature Physical Science 230: 23–24, DOI 10.1038/physci230023a0.
Wacker JF, 1990. 26A1 Survey of Antarctic Meteorites. In: Cassidy WA and Whillans IM, eds., Workshop on Antarctic Meteorite Stranding Surfaces. LPI Technical Report 90-03: 54.
Walker RM, Zimmerman DW and Zimmerman J, 1972. Thermoluminescence of Lunar Samples: Measurement of Temperature Gradients In Core Material. The Moon 4(3–4): 308–314, DOI 10.1007/BF00561999
Wagner GA, 1985. Thermoluminescence studies on Jilin meteorite. Earth and Planetary Science Letters 72(2–3): 304–306, DOI 10.1016/0012-821X(85)90016-0.
Weisberg MK, McCoy TJ and Krot AN, 2006. Systematics and Evaluation of Meteorite Classification. In: Laurette D and McSween HY, eds., Meteorites and the Early Solar System II: 19–52.
Wlotzka F, 1990. The Meteoritical Bulletin No. 69. Meteoritics 25: 237–239.
Wlotzka F, 1991. The Meteoritical Bulletin No. 70. Meteoritics 26: 68–69.
Wolf SF and Lipschutz ME, 1992. Comparison differences among Antarctic populations: Discriminant analysis of H chondrites from Victoria Land and Queen Maud Land. Lunar and Planetary Science XXIII: 1545–1546.
Zolensky ME, Pieters C, Clark B and Papike JJ, 2000. Invited Review Small is beautiful: The analysis of nanogram-sized astromaterials. Meteoritics and Planetary Science 35(1): 9–29, DOI 10.1111/j.1945-5100.2000.tb01970.x.
Zolensky ME and 74 others, 2006. Mineralogy and petrology of Comet 81P/Wild 2 nucleus samples. Science 314(5806): 1735–1739, DOI 10.1126/science.1135842
Journals System - logo
Scroll to top