RESEARCH PAPER
A first chronological framework for fluvial terrace deposits of the Kampar Kanan River, Indonesia
 
More details
Hide details
1
, Switzerland
 
2
, Indonesia
 
3
, Germany
 
 
Submission date: 2024-12-31
 
 
Acceptance date: 2025-05-28
 
 
Online publication date: 2025-06-06
 
 
Publication date: 2025-06-06
 
 
Corresponding author
Yuniarti Yuskar   

Institute of Earth Surface Dynamics, University of Lausanne, 1015, Lausanne, Switzerland
 
 
Geochronometria 2025;52(1)
 
KEYWORDS
TOPICS
ABSTRACT
Late Quaternary landscape evolution in tropical environments, such as Indonesia, remains poorly constrained due to limited prior studies and mineral properties that are challenging for luminescence dating. In this study, single- and multi-grain luminescence measurements of quartz and K-feldspar were explored for fill terrace deposits at the Kampar Kanan River, Indonesia. Our objective is to develop a chrono-stratigraphic framework that allows the reconstruction of late Quaternary fluvial morpho-dynamics, including climatic change. Quartz measurements were made using blue and green stimulation and single-aliquot regenerative dose (SAR) and double SAR protocols. However, as none of the quartz signals were fast component-dominated, they were not used for dating. Infrared-stimulated luminescence of multiple grains of K-feldspar at 50 ºC (IR50) and post-infrared infrared-stimulated luminescence at 225 ºC (pIR50IRSL225) yielded sufficiently bright signal intensities for dating, and ages were calculated using either the average dose (ADM) or minimum age model (MAM). The luminescence chronology based on fading corrected pIR50IRSL225 data yields ages from Marine Isotope Stage (MIS) 6 or earlier to MIS 1. The chrono-stratigraphy indicates that the river was likely aggradational during climate transitions from wet to dry with the deposition of more gravelly material, and erosional during colder periods when overbank deposition of fines may have been coincident with increased vertical river erosion due to a stronger monsoon.
ACKNOWLEDGEMENTS
This research was partially supported by Universitas Islam Riau (UIR). We thank the Laboratory of Geologi-cal Engineering – UIR (Adi Suryadi and Bayu Harpani) which helped us with the sedimentological analysis. Also, we thank the field assistants who helped us in the field with administration and permit with Kampar Regency (Abdurrahman and Adriyadhi) and collecting lumines-cence and sedimentological samples (thanks to Tristan, Revanda, Peter, Ziadul Faiez and Gilang) and also ship-ping the sample from Indonesia to Switzerland.
REFERENCES (99)
1.
Auclair M, Lamothe M and Huot S, 2003. Measurement of anomalous fading for feldspar IRSL using SAR. Radiation Measurements 37(4–5): 487–492, DOI 10.1016/S1350-4487(03)00018-0.
 
2.
Autzen M, Andersen CE, Bailey M and Murray AS, 2022. Calibration quartz: An update on dose calculations for luminescence dating. Radiation Measurements 157: 106828, DOI 10.1016/j.radmeas.2022.106828.
 
3.
Bailey M, Shipley DR and Manning JW, 2015. Roos and NACP-02 ion chamber perturbations and water-air stopping-power ratios for clinical electron beams for energies from 4 to 22 MeV. Physics in Medicine and Biology 60(3): 1087–1105, DOI 10.1088/0031-9155/60/3/1087.
 
4.
Balescu S and Lamothe M, 1994. Comparison of TL and IRSL age estimates of feldspar course grains from waterlain sediments. Quaternary Science Reviews 13(5–7): 437–444, DOI 10.1016/0277-3791(94)90056-6.
 
5.
Banerjee D, Murray AS, Bøtter-Jensen L and Lang A, 2001. Equivalent dose estimation using a single aliquot of polymineral fine grains. Radiation Measurements 33(1): 73–94, DOI 10.1016/S1350-4487(00)00101-3.
 
6.
Bejarano-Arias I, Van Wees RMJ, Alexanderson H, Janočko J and Perić Z.M, 2023. Testing the Applicability of Quartz and Feldspar for Luminescence Dating of Pleistocene Alluvial Sediments in the Tatra Mountain Foothills, Slovakia. Geochronometria 50(1): 50–80, DOI 10.2478/geochr-2023-0002.
 
7.
Blong RJ and Gillespie R, 1978. Fluvially transported charcoal gives erroneous 14C ages for recent deposits. Nature 271: 739–741, DOI 10.1038/271739a0.
 
8.
Bogaart PW, Tucker GE and De Vries JJ, 2003. Channel network morphology and sediment dynamics under alternating periglacial and temperate regimes: a numerical simulation study. Geomorphology 54(3–4): 257–277, DOI 10.1016/S0169-555X(02)00360-4.
 
9.
Bridgland D and Westaway R, 2008. Climatically controlled river terrace staircases: A worldwide Quaternary phenomenon. Geomorphology 98(3–4): 285–315, DOI 10.1016/j.geomorph.2006.12.032.
 
10.
Burow C, 2023. calc_MinDose(): Apply the (un-)logged minimum age model (MAM) after Galbraith et al. (1999) to a given De distribution. Function version 0.4.4. In: Kreutzer, S, Burow, C, Dietze, M, Fuchs, M.C, Schmidt, C, Fischer, M, Friedrich, J, Mercier, N, Philippe, A, Riedesel, S, Autzen, M, Mittelstrass, D, Gray, H.J, Galharret, J, 2023. Luminescence: Comprehensive Luminescence Dating Data Analysis. R package version 0.9.22.
 
11.
Burow C, 2025. calc_AliquotSize(): Estimate the amount of grains on an aliquot. Function version 0.31. In: Kreutzer, S, Burow, C, Dietze, M, Fuchs, M.C, Schmidt, C, Fischer, M, Friedrich, J, Mercier, N, Philippe, A, Riedesel, S, Autzen, M, Mittelstrass, D, Gray, H.J, Galharret, J, Colombo, M, Steinbuch, L, Boer, A.d, 2025. Luminescence: Comprehensive Luminescence Dating Data Analysis. R package version 1.0.1.
 
12.
Buylaert JP, Murray AS, Thomsen KJ and Jain M, 2009. Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiation Measurements 44(5–6): 560–565, DOI 10.1016/j.radmeas.2009.02.007.
 
13.
Choanji T, 2019. Clustering Slope Stability Using Dem Lineament Extraction And Rock Mass Rating In Pangkalan Koto Baru, West Sumatra, Indonesia. GEOMATE 17(60): 225–230, DOI 10.21660/2019.60.ICEE21.
 
14.
Choanji T, 2017. Slope Analysis Based On SRTM Digital Elevation Model Data: Study Case On Rokan IV Koto Area And Surrounding. Journal of Dynamics 1: 71–75.
 
15.
Choi J, Chamberlain E and Wallinga J, 2024. Variance in pIRIR signal bleaching for single grains of feldspar. Quaternary Geochronology 83: 101577, DOI 10.1016/j.quageo.2024.101577.
 
16.
Christophe C, Philippe A and Kreutzer S, 2023. calc_AverageDose(): Calculate the Average Dose and the Dose Rate Dispersion. Function Version 0.1.5. In: Kreutzer S, Burow C, Dietze M, Fuchs M C, Schmidt C, Fischer M, Friedrich J, Mercier N, Philippe A, Riedesel S, Autzen M, Mittelstrass D, Gray H J, Galharret J, 2023. Luminescence : Comprehensive Luminescence Dating Data Analysis. R Package Version 0.9.22. https://CRAN.R-project.org/pac....
 
17.
Clarke MCG, Kartawa W, A Djunuddin E, Suganda E and Bagdja M, 1982. Geological Map of The Pakanbaru Quadrangle, Sumatera, Scale 1 : 250.000. Geological Research and Development Centre, Bandung.
 
18.
Cunha PP, Martins AA, Huot S, Murray A and Raposo L, 2008. Dating the Tejo river lower terraces in the Ródão area (Portugal) to assess the role of tectonics and uplift. Geomorphology 102(1): 43–54, DOI 10.1016/j.geomorph.2007.05.019.
 
19.
Cunningham AC and Wallinga J, 2012. Realizing the potential of fluvial archives using robust OSL chronologies. Quaternary Geochronology 12: 98–106, DOI 10.1016/j.quageo.2012.05.007.
 
20.
Dietze M, 2023. plot_KDE(): Plot kernel density estimate with statistics. Function version 3.6.0. In: Kreutzer S, Burow C, Dietze M, Fuchs MC, Schmidt C, Fischer M, Friedrich J, Mer-cier N, Philippe A, Riedesel S, Autzen M, Mittelstrass D, Gray HJ, Galharret J, 2023. Luminescence: Comprehensive Lumi-nescence Dating Data Analysis . R package version 0.9.22, https://CRAN.R-project.org/pac...
 
21.
Duller GAT, 2008. Single-grain optical dating of Quaternary sediments: why aliquot size matters in luminescence dating. Boreas 37(4): 589–612, DOI 10.1111/j.1502-3885.2008.00051.x.
 
22.
Duller GAT, 2003. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements 37(2): 161–165, DOI 10.1016/S1350-4487(02)00170-1.
 
23.
Duller GAT, 1992. Luminescence Chronology of Raised Marine Terraces, South-West North Island, New Zealand. PhD thesis, Institute of Earth Studies, University of Wales, Aberystwyth.
 
24.
Durcan JA, King GE and Duller GAT, 2015. Quaternary Geochronology DRAC : Dose Rate and Age Calculator for trapped charge dating. Quaternary Geochronology 28: 54–61, DOI 10.1016/j.quageo.2015.03.012.
 
25.
Duval M, Westaway K, Zaim J, Rizal Y, Aswan, Puspaningrum MR, Trihascaryo A, Albers PCH, Smith HE, Drawhorn GM, Price GJ and Louys J, 2021. New Chronological Constraints for the Late Pleistocene Fossil Assemblage and Associated Breccia from Ngalau Sampit, Sumatra. Open Quaternary 7(1): 1–24, DOI 10.5334/oq.96.
 
26.
Galbraith RF, Roberts RG, Laslett GM, Yoshida H and Olley JM, 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part I, experimental design and statistical models. Archaeometry 41(2): 339–364, DOI 10.1111/j.1475-4754.1999.tb00987.x.
 
27.
Gao H, Li Z, Pan B, Liu F and Liu X, 2016. Fluvial responses to late Quaternary climate change in the Shiyang River drainage system, western China. Geomorphology 258: 82–94, DOI 10.1016/j.geomorph.2016.01.018.
 
28.
Guérin G, Christophe C, Philippe A, Murray AS, Thomsen KJ, Tribolo C, Urbanova P, Jain M, Guibert P, Mercier N, Kreutzer S and Lahaye C, 2017. Absorbed dose, equivalent dose, measured dose rates, and implications for OSL age estimates: Introducing the Average Dose Model. Quaternary Geochronology 41: 163–173, DOI 10.1016/j.quageo.2017.04.002.
 
29.
Guérin G, Mercier N and Adamiec G, 2011. Dose-rate conversion factors: update. Ancient TL 29(1): 5–8, DOI 10.26034/la.atl.2011.443.
 
30.
Guérin G, Mercier N, Nathan R, Adamiec G and Lefrais Y, 2012. On the use of the infinite matrix assumption and associated concepts: A critical review. Radiation Measurements 47(9): 778–785, DOI 10.1016/j.radmeas.2012.04.004.
 
31.
Guralnik B, Ankjærgaard C, Jain M, Murray AS, Müller A, Wälle M, Lowick SE, Preusser F, Rhodes EJ, Wu TS, Mathew G and Herman F, 2015. OSL-thermochronometry using bedrock quartz: A note of caution. Quaternary Geochronology 25: 37–48, DOI 10.1016/j.quageo.2014.09.001.
 
32.
Hansen V, Murray A, Buylaert JP, Yeo EY and Thomsen K, 2015. A new irradiated quartz for beta source calibration. Radiation Measurements 81: 123–127, DOI 10.1016/j.radmeas.2015.02.017.
 
33.
Heitmuller FT and Hudson PF, 2009. Downstream trends in sediment size and composition of channel-bed, bar, and bank deposits related to hydrologic and lithologic controls in the Llano River watershed, central Texas, USA. Geomorphology 112(3–4): 246–260, DOI 10.1016/j.geomorph.2009.06.010.
 
34.
Heidrick TL and Aulia K, 1993. A Structural and Tectonic Model of The Coastal Plain Block, Central Sumatra Basin, Indonesia. Proceeding IPA 22th Annual Convention, Jakarta.
 
35.
Huntley DJ, 2006. An explanation of the power-law decay of luminescence. Journal of Physics: Condensed Matter 18: 1359–1365, DOI 10.1088/0953-8984/18/4/020.
 
36.
Huntley DJ and Baril MR, 1997. The K content of the K-feldspars being measured in optical dating or in thermoluminescence dating. Ancient TL 15(1): 11–13, DOI 10.26034/la.atl.1997.271.
 
37.
Huntley DJ and Lamothe M, 2001. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Canadian Journal of Earth Sciences 38(7): 1093–1106, DOI 10.1139/e01-013.
 
38.
Jain M, Murray AS and Botter-Jensen L, 2004. Optically stimulated luminescence dating: How significant is incomplete light exposure in fluvial environments?. Quaternaire 15(1–2): 143–157, DOI 10.3406/quate.2004.1762.
 
39.
Kaharudin HAF, Alifah A, Ramadhan L and Kealy S, 2020. A review of archaeological dating efforts at cave and rockshelter sites in the Indonesian Archipelago. Journal of Indo-Pacific Archaeology 44: 80–112, DOI 10.7152/jipa.v44i0.15659.
 
40.
Kars RH, Wallinga J and Cohen KM, 2008. A new approach towards anomalous fading correction for feldspar IRSL dating — tests on samples in field saturation. Radiation Measurements 43(2–6): 786–790, DOI 10.1016/j.radmeas.2008.01.021.
 
41.
Kausarian H, Josaphat Tetuko Sri Sumantyo, Batara, Suryadi A and Pangestu T, 2024. SAR Sentinel Data Analysis: Hydrological Dynamics and Rainfall Patterns in the Kampar River Basin (2018-2023). Evergreen 11(3): 1558–1567, DOI 10.5109/7236811.
 
42.
King GE and Burow C, 2023. calc_Huntley2006(): Apply the Huntley (2006) model. Function version 0.4.1. In: Kreutzer, S, Burow, C, Dietze, M, Fuchs, M.C, Schmidt, C, Fischer, M, Friedrich, J, Mercier, N, Philippe, A, Riedesel, S, Autzen, M, Mittelstrass, D, Gray, H.J, Galharret, J, 2023. Luminescence: Comprehensive Luminescence Dating Data Analysis. R package version 0.9.22.
 
43.
King GE, Burow C, Roberts HM and Pearce NJG, 2018. Age determination using feldspar: Evaluating fading-correction model performance. Radiation Measurements 119: 58–73, DOI 10.1016/j.radmeas.2018.07.013.
 
44.
Knox JC, 2006. Floodplain sedimentation in the Upper Mississippi Valley: Natural versus human accelerated. Geomorphology 79(3–4): 286–310, DOI 10.1016/j.geomorph.2006.06.031.
 
45.
Koesoemadinata RP and Matasak T, 1981. Stratigraphy and sedimentation Ombilin Basin, Central Sumatra (West Sumatra Province). Proc. Indones. Pet. Assoc. Tenth Annu. Conv: 217–250.
 
46.
Kreutzer S and Burow C, 2023. analyse_FadingMeasurement(): Analyse fading measurements and returns the fading rate per decade (g-value). Function version 0.1.21. In: Kreutzer, S, Burow, C, Dietze, M, Fuchs, M.C, Schmidt, C, Fischer, M, Friedrich, J, Mercier, N, Philippe, A, Riedesel, S, Autzen, M, Mittelstrass, D, Gray, H.J, Galharret, J, 2023. https://CRAN.R-project.org/pac....
 
47.
Kreutzer S, Burow C, Dietze M, Fuchs M C, Schmidt C, Fischer M, Friedrich J, Mercier N, Philippe A, Riedesel S, Autzen M, Mittelstrass D, Gray H J, Galharret J-M, 2023. Luminescence: Comprehensive Luminescence Dating Data Analysis . R Package Version 0.9.22. https://CRAN.R-project.org/pac....
 
48.
Kreutzer S, Schmidt C, Fuchs MC, Dietze M, Fischer M and Fuchs M, 2012. Introducing an R package for luminescence dating analysis. Ancient TL 30(1): 1–8, DOI 10.26034/la.atl.2012.457.
 
49.
Krüger J and Kjær KH, 1999. A data chart for field description and genetic interpretation of glacial diamicts and associated sediment with examples from Greenland, Iceland, and Denmark. Boreas 28(3): 386–402, DOI 10.1111/j.1502-3885.1999.tb00228.x.
 
50.
Lewin J and Gibbard PL, 2010. Quaternary river terraces in England: Forms, sediments and processes. Geomorphology 120(3–4): 293–311, DOI 10.1016/j.geomorph.2010.04.002.
 
51.
Linsley BK, Rosenthal Y and Oppo DW, 2010. Holocene evolution of the Indonesian throughflow and the western Pacific warm pool. Nature Geoscience 3: 578–583, DOI 10.1038/ngeo920.
 
52.
Louys J, Kealy S, O’Connor S, Price G, Hawkins S, Aplin K, Rizal Y, Zaim J, Mahirta, Tanudirjo D, Santoso WD, Hidayah AR, Trihascaryo A, Wood R, Bevitt J and Clark T, 2017. Differential preservation of vertebrates in Southeast Asian caves. International Journal of Speleology 46: 379–408, DOI 10.5038/1827-806X.46.3.2131.
 
53.
Macklin MG, Lewin J and Woodward JC, 2012. The fluvial record of climate change. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370: 2143–2172, DOI 10.1098/rsta.2011.0608.
 
54.
Miall AD, 1985. Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. Earth-Science Reviews 22(4): 261–308, DOI 10.1016/0012-8252(85)90001-7.
 
55.
Mishra K and Sinha R, 2020. Flood risk assessment in the Kosi megafan using multi-criteria decision analysis: A hydro-geomorphic approach. Geomorphology 350: 106861, DOI 10.1016/j.geomorph.2019.106861.
 
56.
Morley R, 2017. Constructing Neogene palaeogeographical maps for the Sunda region. SEAPEX Exploration Conference, Singapore, 1–7.
 
57.
Murray AS and Wintle AG, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32(1): 57–73, DOI 10.1016/S1350-4487(99)00253-X.
 
58.
Olley J, Caitcheon G and Murray A, 1998. The distribution of apparent dose as determined by optically stimulated luminescence in small aliquots of fluvial quartz: Implications for dating young sediments. Quaternary Science Reviews 17(11): 1033–1040, DOI 10.1016/S0277-3791(97)00090-5.
 
59.
O’Gorman K, Tanner D, Sontag-González M, Li B, Brink F, Jones BG, Dosseto A, Jatmiko, Roberts RG and Jacobs Z, 2021. Composite grains from volcanic terranes: Internal dose rates of supposed ‘potassium-rich’ feldspar grains used for optical dating at Liang Bua, Indonesia. Quaternary Geochronology 64: 101182, DOI 10.1016/j.quageo.2021.101182.
 
60.
Prescott JR and Hutton JT, 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Radiation Measurements 23(2–3): 497–500, DOI 10.1016/1350-4487(94)90086-8.
 
61.
Putra DBE and Choanji T, 2016. Preliminary Analysis of Slope Stability in Kuok and Surrounding Areas. Journal of Geoscience, Engineering, Environment, and Technology 1(1): 41–44, DOI 10.24273/jgeet.2016.11.5.
 
62.
Railsback LB, Gibbard PL, Head MJ, Voarintsoa NRG and Toucanne S, 2015. An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages. Quaternary Science Reviews 111: 94–106, DOI 10.1016/j.quascirev.2015.01.012.
 
63.
Revanda M, Yuskar Y, Eka Putra DB and Sari DP, 2019. Quartenary Sediment Facies Distribution in Meandering River Environment: Study Case at the Kampar River, Rumbio Area and Surroundings, Riau Province. Journal of Physics: Conference Series 1: 1–7, DOI 10.1088/1742-6596/1363/1/012038.
 
64.
Riebe CS, Kirchner JW, Granger DE and Finkel RC, 2000. Erosional equilibrium and disequilibrium in the Sierra Nevada, inferred from cosmogenic 26 Al and 10 Be in alluvial sediment. Geology 28(9): 803–806, DOI 10.1130/0091-7613(2000)28<803:EEADIT>2.0.CO;2.
 
65.
Rittenour TM, 2008. Luminescence dating of fluvial deposits: Applications to geomorphic, palaeoseismic and archaeological research. Boreas 37(4): 613–635, DOI 10.1111/j.1502-3885.2008.00056.x.
 
66.
Rixhon G, Briant RM, Cordier S, Duval M, Jones A and Scholz D, 2017. Revealing the pace of river landscape evolution during the Quaternary: recent developments in numerical dating methods. Quaternary Science Reviews 166: 91–113, DOI 10.1016/j.quascirev.2016.08.016.
 
67.
Roberts HM and Wintle AG, 2001. Equivalent dose determinations for polymineralic fine-grains using the SAR protocol: Application to a Holocene sequence of the Chinese Loess Plateau. Quaternary Science Reviews 20(5–9): 859–863, DOI 10.1016/S0277-3791(00)00051-2.
 
68.
Sinha R and Latrubesse EM, 2020. Geomorphology of fluvial systems: Focus on tropical rivers. Geomorphology 363: 107223, DOI 10.1016/j.geomorph.2020.107223.
 
69.
Sinha R, Latrubesse EM and Nanson GC, 2012. Quaternary fluvial systems of tropics: Major issues and status of research. Palaeogeography, Palaeoclimatology, Palaeoecology 356–357: 1–15, DOI 10.1016/j.palaeo.2012.07.024.
 
70.
Smedley RK, Buylaert J-P and Újvári G, 2019. Comparing the accuracy and precision of luminescence ages for partially-bleached sediments using single grains of K-feldspar and quartz. Quaternary Geochronology 53: 101007, DOI 10.1016/j.quageo.2019.101007.
 
71.
Sontag-González M, Li B, O’Gorman K, Sutikna T, Jatmiko, Jacobs Z, Roberts RG, 2021. Establishing a pIRIR procedure for De determination of composite mineral grains from volcanic terranes: A case study of sediments from Liang Bua, Indonesia. Quaternary Geochronology 65: 101181, DOI 10.1016/j.quageo.2021.101181.
 
72.
Stanistreet IG, Cairncross B and McCarthy TS, 1993. Low sinuosity and meandering bedload rivers of the Okavango Fan: channel confinement by vegetated levées without fine sediment. Sedimentary Geology 85(1–4): 135–156, DOI 10.1016/0037-0738(93)90079-K.
 
73.
Stanley DJ, 2000. Holocene Depositional Patterns, Neotectonics and Sundarban Mangroves in the Western Ganges-Brahmaputra Delta. Journal of Coastal Research 16(1): 26–39.
 
74.
Steffen D, Schlunegger F and Preusser F, 2009. Drainage basin response to climate change in the Pisco valley, Peru. Geology 37(6): 491–494, DOI 10.1130/G25475A.1.
 
75.
Stokes S, Bray HE and Blum MD, 2001. Optical resetting in large drainage basins: Tests of zeroing assumptions using single-aliquot procedures. Quaternary Science Reviews 20(5–9): 879–885, DOI 10.1016/S0277-3791(00)00045-7.
 
76.
Stokes M, Mather AE, Belfoul M, Faik F, Bouzid S, Geach MR, Cunha PP, Boulton SJ and Thiel C, 2017. Controls on dryland mountain landscape development along the NW Saharan desert margin: Insights from Quaternary river terrace sequences (Dadès River, south-central High Atlas, Morocco). Quaternary Science Reviews 166: 363–379, DOI 10.1016/j.quascirev.2017.04.017.
 
77.
Syvitski JPM, Cohen S, Kettner AJ and Brakenridge GR, 2014. How important and different are tropical rivers? - An overview. Geomorphology 227: 5–17, DOI 10.1016/j.geomorph.2014.02.029.
 
78.
Sutikna T, Tocheri MW, Morwood MJ, Saptomo EW, Jatmiko, Awe RD, Wasisto S, Westaway KE, Aubert M, Li B, Zhao J, Storey M, Alloway BV, Morley MW, Meijer HJM, Van Den Bergh GD, Grün R, Dosseto A, Brumm A, Jungers WL and Roberts RG, 2016. Revised stratigraphy and chronology for Homo floresiensis at Liang Bua in Indonesia. Nature 532: 366–369, DOI 10.1038/nature17179.
 
79.
Thomas MF, 2008. Understanding the impacts of Late Quaternary climate change in tropical and sub-tropical regions. Geomorphology 101(1–2): 146–158, DOI 10.1016/j.geomorph.2008.05.026.
 
80.
Thomsen KJ, Murray AS, Jain M and Bøtter-Jensen L, 2008. Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiation Measurements 43(9–10): 1474–1486, DOI 10.1016/j.radmeas.2008.06.002.
 
81.
Thorp M and Thomas M, 1992. The timing of alluvial sedimentation and floodplain formation in the lowland humid tropics of Ghana, Sierra Leone and western Kalimantan (Indonesian Borneo). Geomorphology 4(6): 409–422, DOI 10.1016/0169-555X(92)90035-M.
 
82.
Van Den Bergh GD, Li B, Brumm A, Grün R, Yurnaldi D, Moore MW, Kurniawan I, Setiawan R, Aziz F, Roberts RG, Suyono, Storey M, Setiabudi E and Morwood MJ, 2016. Earliest hominin occupation of Sulawesi, Indonesia. Nature 529: 208–211, DOI 10.1038/nature16448.
 
83.
Van Der Kaars S, Bassinot F, De Deckker P and Guichard F, 2010. Changes in monsoon and ocean circulation and the vegetation cover of southwest Sumatra through the last 83,000 years: The record from marine core BAR94-42. Palaeogeography, Palaeoclimatology, Palaeoecology 296(1–2): 52–78, DOI 10.1016/j.palaeo.2010.06.015.
 
84.
Vandenberghe J, 1995. Timescales, climate and river development. Quaternary Science Reviews 14(6): 631–638, DOI 10.1016/0277-3791(95)00043-O.
 
85.
Verstappen H, 1980. Quaternary Climatic Changes and Natural Environment in SE Asia. Geojournal 4: 45–54, DOI 10.1007/BF00586754.
 
86.
Wallinga J, 2002. Optically stimulated luminescence dating in fluvial deposits: A review. Boreas 31(4): 303–322, DOI 10.1111/j.1502-3885.2002.tb01076.x.
 
87.
Wang B, Wang X, Yi S, Zhao L and Lu H, 2021. Responses of fluvial terrace formation to monsoon climate changes in the north-eastern Tibetan Plateau: Evidence from pollen and sedimentary records. Palaeogeography, Palaeoclimatology, Palaeoecology 564: 110196, DOI 10.1016/j.palaeo.2020.110196.
 
88.
Wang X, Ma J, Yi S, Vandenberghe J, Dai Y and Lu H, 2019. Interaction of fluvial and eolian sedimentation processes, and response to climate change since the last glacial in a semiarid environment along the Yellow River. Quartenary Research 91(2): 570–583, DOI 10.1017/qua.2018.22.
 
89.
Wang X, Vandenberghe J, Yi S, Van Balen R and Lu H, 2015. Climate-dependent fluvial architecture and processes on a suborbital timescale in areas of rapid tectonic uplift: An example from the NE Tibetan Plateau. Global and Planetary Change 133: 318–329, DOI 10.1016/j.gloplacha.2015.09.009.
 
90.
Westaway KE, 2009. The red, white and blue of quartz luminescence: A comparison of De values derived for sediments from Australia and Indonesia using thermoluminescence and optically stimulated luminescence emissions. Radiation Measurements 44(5–6): 462–466, DOI 10.1016/j.radmeas.2009.06.001.
 
91.
Westaway KE, Louys J, Awe RD, Morwood MJ, Price GJ, Zhao JX, Aubert M, Joannes-Boyau R, Smith TM, Skinner MM, Compton T, Bailey RM, Van Den Bergh GD, De Vos J, Pike AWG, Stringer C, Saptomo EW, Rizal Y, Zaim J, Santoso WD, Trihascaryo A, Kinsley L and Sulistyanto B, 2017. An early modern human presence in Sumatra 73,000-63,000 years ago. Nature 548: 322–325, DOI 10.1038/nature23452.
 
92.
Westaway KE and Roberts RG, 2006. A dual-aliquot regenerative-dose protocol (DAP) for thermoluminescence (TL) dating of quartz sediments using the light-sensitive and isothermally stimulated red emissions. Quaternary Science Reviews 25(19–20): 2513–2528, DOI 10.1016/j.quascirev.2005.06.010.
 
93.
Wisha UJ, Rahmawan GA and Ilham I, 2018. Bono Kuala Kampar, Primadona di Timur Sumatera Yang Terancam Hilang (Kuala Kampar's Bono, a favourite in eastern Sumatra, is in danger of disappearing). AMAFRAD Press: Jakarta, Indonesia: 89pp (In Indonesian).
 
94.
Wisha UJ, Wijaya YJ and Hisaki Y, 2022. Real-Time Properties of Hydraulic Jump off a Tidal Bore, Its Generation and Transport Mechanisms: A Case Study of the Kampar River Estuary, Indonesia. Water 14(16): 2561, DOI 10.3390/w14162561.
 
95.
Wood SH, Ziegler AD and Bundarnsin T, 2008. Floodplain deposits, channel changes and riverbank stratigraphy of the Mekong River area at the 14th-Century city of Chiang Saen, Northern Thailand. Geomorphology 101(3): 510–523, DOI 10.1016/j.geomorph.2007.04.030.
 
96.
Yuskar Y, 2016. Geo-tourism Potential of Sand Bars and Oxbow lake at Buluh Cina, Kampar Riau, Indonesia. Journal of Geoscience, Engineering, Environtment, and Technology 1(1): 59–62, DOI 10.24273/jgeet.2016.11.8.
 
97.
Yuskar Y, Putra DBE and Revanda M, 2018. Quarternary Sediment Characteristics of Floodplain area: Study Case at Kampar River, Rumbio Area and Surroundings, Riau Province. Journal of Geoscience, Engineering, Environment, and Technology 3(1): 63–68, DOI 10.24273/jgeet.2018.3.1.1226.
 
98.
Yuskar Y, Putra DBE, Suryadi A, Choanji T and Cahyaningsih C, 2017. Structural Geology Analysis In A Disaster-Prone Of Slope Failure, Merangin Village, Kuok District, Kampar Regency, Riau Province. Journal of Geoscience, Engineering, Environment, and Technology 2(4): 249–254, DOI 10.24273/jgeet.2017.2.4.691.
 
99.
Zhang JF and Zhou LP, 2007. Optimization of the “double SAR” procedure for polymineral fine grains. Radiation Measurements 42(9): 1475–1482, DOI 10.1016/j.radmeas.2007.06.007.
 
eISSN:1897-1695
ISSN:1733-8387
Journals System - logo
Scroll to top