Influence of in Situ Temperature on the Sensitization of Quartz: A Simulation Study
More details
Hide details
Astrophysical Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India
Submission date: 2014-04-16
Acceptance date: 2014-11-13
Online publication date: 2015-03-11
Geochronometria 2015;42(1):28-40
The influence of ambient geological and burial temperatures, prevailing in nature, on the charge population of the defect centers and, eventually, the sensitivity of the luminescence emission of quartz was simulated using empirical model. Various permutation and combination of these tem-peratures were incorporated so as to observe, both, the collective and independent impact of these two temperatures on the charge kinetics. The results of seem to demonstrate the role of the ambient tem-perature in the sensitization of quartz mineral
Adamiec G, 2005. Investigation of a numerical model of the pre-dose mechanism in quartz. Radiation Measurements 39: 175-189, DOI 10.1016/j.radmeas.2004.03.008.
Aitken MJ, 1998. An introduction to optical dating (Oxford: Oxford University Press).
Aitken MJ and Smith BW, 1988. Optical dating: recuperation after bleaching. Quaternary Science Reviews 7: 387-393, DOI 10.1016/0277-3791(88)90034-0.
Bailiff IK, 1994. The pre-dose technique. Radiation Measurements 23: 471-479, DOI 10.1016/1350-4487(94)90081-7.
Bailey RM, 2001. Towards a general kinetic model for optically and thermally stimulated luminescence of quartz. Radiation Measure-ments 33: 17-45, DOI 10.1016/S1350-4487(00)00100-1.
Bailey RM, 2004. Paper I - simulation of dose absorption in quartz over geological time scales and its implication for the precision and ac-curacy of optically dating. Radiation Measurements 38: 299-310, DOI 10.1016/j.radmeas.2003.09.005.
Banerjee D, 2001. Supralinearity and sensitivity changes in optically stimulated luminescence of annealed quartz. Radiation Measure-ments 33: 47-57, DOI 10.1016/S1350-4487(00)00133-5.
Chen R, 1969. Glow curves with general order kinetics. Journal of The Electrochemical Society 116: 1254-1257, DOI 10.1149/1.2412291.
Kitis G, Pagonis V, Chen R and Polymeris GS, 2006. A comprehensive comparative study of the pre-dose effect for three quartz crystals of different origins. Radiation Protection Dosimetry 119: 438-441, DOI 10.1093/rpd/nci548.
Koul DK and Chougaonkar MP, 2007. Pre-dose phenomenon in the OSL signal of quartz. Radiation Measurements 42: 1265-1272, DOI 10.1016/j.radmeas.2007.04.001.
Koul DK, Adamiec G and Chougaonkar MP, 2009. Participation of the R- centers in the sensitization of the OSL signal. Journal of Phys-ics D: Applied Physics 42: 115110, DOI 10.1088/0022-3727/42/11/115110.
Murray AS and Roberts RG, 1998. Measurement of the equivalent dose in quartz using a regenerative-dose single-aliquot protocol. Radia-tion Measurements 29: 503-515, DOI 10.1016/S1350-4487(98)00044-4.
Murray AS and Wintle AG, 1999. Sensitization and stability of quartz OSL: Implications for interpretation of dose-response curves. Ra-diation Protection Dosimetry 84: 427-432.
Murray AS and Wintle AG, 2000. Luminescence dating of quartz using an improved single- aliquot regenerative-dose protocol. Radiation Measurements 32: 57-73, DOI 10.1016/S1350-4487(99)00253-X.
Oniya EO, Polymeris GS, Tsirliganis NC. and Kitis G, 2012. On the pre-dose sensitization of the various components of the LM-OSL signal of annealed quartz; comparison with the case of 110°C TL peak. Radiation Measurements 47: 864-869, DOI 10.1016/j.radmeas.2012.03.009.
Pagonis V, Balsamo E, Barnold C, Duling K and McCole S, 2008. Simulations of the predose technique for retrospective dosimetry and authenticity testing. Radiation Measurements 43: 1343-1353, DOI 10.1016/j.radmeas.2008.04.095.
Pagonis V, Kitis G and Chen R, 2003. Applicability of Zimmerman predose model in the thermoluminescence of predosed and an-nealed synthetic quartz samples. Radiation Measurements 37: 267-274, DOI 10.1016/S1350-4487(03)00042-8.
Pagonis V, Wintle AG, Chen R, 2007. Simulations of the effect of pulse annealing on optically-stimulated luminescence of quartz. Radia-tion Measurements 42: 1587-1599, DOI 10.1016/S1350-4487(03)00042-8.
Wintle AG and Murray AS, 1999. Luminescence sensitivity changes in quartz. Radiation Measurements 30: 107-118, DOI 10.1016/S1350-4487(03)00042-8.
Zimmerman J, 1971. The radiation-induced increase of the 110°C thermoluminescence sensitivity of fired quartz. Journal of Physics C: Solid State Physics 4: 3265-3276, DOI 10.1088/0022-3719/4/18/032.
Journals System - logo
Scroll to top