Optical dating of alluvial deposits at the orogenic front of the andean precordillera (Mendoza, Argentina)
More details
Hide details
Institut für Geologie und Paläontologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 24, Münster, 48149, Germany
Leibniz Institute for Applied Geophysics, Stilleweg 2, 30655, Hannover, Germany
Online publication date: 2011-12-25
Publication date: 2012-03-01
Geochronometria 2012;39(1):62-75
Well constrained numerical ages of alluvial fan sediments are key to understanding the chronology of alluvial episodes and tectonic activity at the front of the Andean Precordillera. We tested the application of radiocarbon and optically stimulated luminescence (OSL) dating in the distal part of an alluvial fan five kilometers north of Mendoza. For OSL dating a large number of aliquots (n > 70) — each composed of ∼50 quartz grains — were measured in order to obtain reliable burial ages despite scattered dose distributions. Owing to a feldspar contamination in all samples, an infrared stimulation was inserted before each OSL measurement, which reduced the feldspar OSL signal successfully. By using the minimum age model we obtained stratigraphically consistent burial ages of alluvial deposits in a depth profile. The uppermost ∼1 m of sediment is composed of debris flow deposits buried 770±76 years ago. Three plant remnants used for radiocarbon dating from the same layer, however, yielded ages younger than 350 years, which are interpreted to underestimate the depositional age. Underneath the debris flow, a major unconformity cuts a series of distal alluvial fan sediments with interstratified floodplain deposits, which are composed of sandy and calciterich silt layers, respectively. Three samples from this unit which were distributed over one meter of sediment thickness yielded statistically concordant OSL ages of 12.3±1.2 ka, 12.3±1.2 ka, and 11.7±1.1 ka. The deposition of these sediments during the latest Pleistocene coincides with a phase of cool and humid climate, which occurred before the alluvial fan propagated farther into the foreland. The overlying debris flow sediments are associated with alluvial fan incision during the arid Late Holocene.
Adamiec G and Aitken M, 1998. Dose-rate conversion factors: update. Ancient TL 16(2): 37–50.
Aitken MJ, 1985. Thermoluminescence Dating. Academic Press, New York: 351pp.
Alappat L, Vink A, Tsukamoto S and Frechen M, 2010. Establishing the Late Pleistocene-Holocene sedimentation boundary in the southern North Sea using OSL dating of shallow continental shelf sediments. Proceedings of the Geologists’ Association 121(1): 43–54, DOI 10.1016/j.pgeola.2009.12.006.
Anders MD, Pederson JL, Rittenour TM, Sharp WD, Gosse JC, Karlstrom KE, Crossey LJ, Goble RJ, Stockli L and Yang GA, 2005. Pleistocene geomorphology and geochronology of eastern Grand Canyon: linkages of landscape components during climate changes. Quaternary Science Reviews 24(23–24): 2428–2448, DOI 10.1016/j.quascirev.2005.03.015.
Arnold LJ and Roberts RG, 2009. Stochastic modelling of multi-grain equivalent dose (De) distributions: Implications for OSL dating of sediment mixtures. Quaternary Geochronology 4(3): 204–230, DOI 10.1016/j.quageo.2008.12.001.
Arnold LJ, Bailey RM and Tucker, GE, 2007. Statistical treatment of fluvial dose distributions from southern Colorado arroyo deposits. Quaternary Geochronology 2(1–4): 162–167, DOI 10.1016/j.quageo.2006.05.003.
Askew BL and Algermissen ST, 1985. Catalog of Earthquakes for South America: Hypocenter and Intensity Data. Volumes 4, 6, 7a–c, CERESIS, Lima.
Bailey RM and Arnold LJ, 2006. Statistical modelling of single grain quartz De distributions and an assessment of procedures for estimating burial dose. Quaternary Science Reviews 25(19–20): 2475–2502, DOI 10.1016/j.quascirev.2005.09.012.
Banerjee D, Murray AS, Bøtter-Jensen L and Lang A, 2001. Equivalent dose estimation using a single aliquot of polymineral fine grains. Radiation Measurements 33(1): 73–94, DOI 10.1016/S1350-4487(00)00101-3.
Blair MW, Yukihara EG and McKeever SWS, 2005. Experiences with single-aliquot OSL procedures using coarse-grain feldspars. Radiation Measurements 39(4): 361–374, DOI 10.1016/j.radmeas.2004.05.008.
Bøtter-Jensen L, Andersen CE, Duller GAT and Murray AS, 2003. Developments in radiation, stimulation and observation facilities in luminescence measurements. Radiation Measurements 37(4–5): 535–541, DOI 10.1016/S1350-4487(03)00020-9.
Buylaert JP, Murray AS, Thomsen KJ and Jain M, 2009. Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiation Measurements 44(5–6): 560–565, DOI 10.1016/j.radmeas.2009.02.007.
Cunningham AC and Wallinga J, 2010. Selection of integration time intervals for quartz OSL decay curves. Quaternary Geochronology 5(6): 657–666, DOI 10.1016/j.quageo.2010.08.004.
Cupper ML, 2006. Luminescence and radiocarbon chronologies of playa sedimentation in the Murray Basin, southeastern Australia. Quaternary Science Reviews 25(19–20): 2594–2607, DOI 10.1016/j.quascirev.2005.09.011.
D’Antonio H, 1983. Pollen analysis of Gruta del Indio. Quaternary of South America and Antarctic Peninsula 1: 83–104.
DeLong SB and Arnold LJ, 2007. Dating alluvial deposits with optically stimulated luminescence, AMS 14C and cosmogenic techniques, western Transverse Ranges, California, USA. Quaternary Geo-chronology 2(1–4): 129–136, DOI 10.1016/j.quageo.2006.03.012.
Duller GAT, 2003. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements 37(2): 161–165, DOI 10.1016/s1350-4487(02)00170-1.
Fattahi M, Walker R, Hollingsworth J, Bahroudi A, Nazari H, Talebian M, Armitage S and Stokes S, 2006. Holocene slip-rate on the Sab-zevar thrust fault, NE Iran, determined using optically stimulated luminescence (OSL). Earth and Planetary Science Letters 245(3–4): 673–684, DOI 10.1016/j.epsl.2006.03.027.
Feathers JK, Holliday VT and Meltzer DJ, 2006. Optically stimulated luminescence dating of Southern High Plains archaeological sites. Journal of Archaeological Science 33(12): 1651–1665, DOI 10.1016/j.jas.2006.02.013.
Folguera A, Etcheverría M, Pazos PJ, Giambiagi L, Fauqué L, Cortés JM, Rodríguez MF, Irigoyen MV and Fusari C, 2003. Hoja Geológica 3369-15, Potrerillos. Provincia de Mendoza (Geological Map 3369-15, Potrerillos. Mendoza province). Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino. Boletín 301, Buenos Aires: 144pp (in Spanish).
Folz E, Bodu P, Bonte P, Joron JL, Mercier N and Reyss JL, 2001. OSL dating of fluvial quartz from Le Closeau, a Late Paleolithic site near Paris — comparison with C-14 chronology. Quaternary Science Reviews 20(5–9): 927–933, DOI 10.1016/S0277-3791(00)00062-7.
Galbraith RF and Green PF, 1990. Estimating the component ages in a finite mixture. Nuclear Tracks and Radiation Measurements 17(3): 197–206, DOI 10.1016/1359-0189(90)90035-V.
Galbraith RF and Laslett GM, 1993. Statistical models for mixed fission track ages. Nuclear Tracks and Radiation Measurements 21(4): 459–470, DOI 10.1016/1359-0189(93)90185-C.
Galbraith RF, Roberts RG, Laslett GM, Yoshida H and Olley JM, 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: part 1. Experimental design and statistical models. Archaeometry 41(2): 339–364, DOI 10.1111/j.1475-4754.1999.tb00987.x.
Galbraith RF, Roberts RG and Yoshida H, 2005. Error variation in OSL palaeodose estimates from single aliquots of quartz: a factorial ex-periment. Radiation Measurements 39(3): 289–307, DOI 10.1016/j.radmeas.2004.03.023.
García A, Zárate M and Paez MM, 1999. The Pleistocene/Holocene transition and human occupation in the Central Andes of Argentina: Agua de la Cueva locality. Quaternary International 53–54: 43–52, DOI 10.1016/S1040-6182(98)00006-8.
Hancock GS and Anderson RS, 2002. Numerical modeling of fluvial strathterrace formation in response to oscillating climate. Geological Society of America Bulletin 114(9): 1131–1142, DOI 10.1130/0016-7606(2002)114.
Hetzel R, Niedermann S, Tao MX, Kubik PW and Strecker MR, 2006. Climatic versus tectonic control on river incision at the margin of NE Tibet: 10Be exposure dating of river terraces at the mountain front of the Qilian Shan. Journal of Geophysical Research 111, F03012. DOI 10.1029/2005jf000352.
Huntley DJ and Lamothe M, 2001. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Canadian Journal of Earth Sciences 38(7): 1093–1106, DOI 10.1139/cjes-38-7-1093.
Jacobs Z, Duller GAT and Wintle AG, 2006. Interpretation of single grain De distributions and calculation of DeRadiation Measurements 41(3): 264–277, DOI 10.1016/j.radmeas.2005.07.027.
Jacobs Z, Wintle AG, Roberts RG and Duller GAT, 2008. Equivalent dose distributions from single grains of quartz at Sibudu, South Africa: context, causes and consequences for optical dating of archaeological deposits. Journal of Archaeological Science 35(7): 1808–1820, DOI 10.1016/j.jas.2007.11.027.
Jain M, Murray AS and Bøtter-Jensen L, 2004. Optically stimulated luminescence dating: How significant is incomplete bleaching in fluvial environments. Quaternaire 15(1–2): 143–157.
Kadinsky-Cade K, Reilinger R and Isacks B, 1985. Surface deformation associated with the November 23, 1977, Caucete, Argentina, earthquake sequence. Journal of Geophysical Research 90(B14): 2691–2700, DOI 10.1029/JB090iB14p12691.
Kurth G, Phillips FM, Reheis MC, Redwine JL and Paces JB, 2011. Cosmogenic nuclide and uranium-series dating of old, high shore-lines in the western Great Basin, USA. Geological Society of America Bulletin 123(3–4): 744–768, DOI 10.1130/b30010.1.
Lauer T, Frechen M, Hoselmann C and Tsukamoto S, 2010. Fluvial aggradation phases in the Upper Rhine Graben — New insights by quartz OSL dating. Proceedings of the Geologists’ Association 121: 154–161, DOI 10.1016/j.pgeola.2009.10.006.
Madsen AT, Duller GAT, Donnelly JP, Roberts HM and Wintle AG, 2009. A chronology of hurricane landfalls at Little Sippewissett Marsh, Massachusetts, USA, using optical dating. Geomorphology 109(1–2): 36–45, DOI 10.1016/j.geomorph.2008.08.023.
Magee JW, Miller GH, Spooner NA, Questiaux DG, McCulloch MT and Clark PA, 2009. Evaluating Quaternary dating methods: Radiocarbon, U-series, luminescence, and amino acid racemization dates of a late Pleistocene emu egg. Quaternary Geochronology 4(2): 84–92, DOI 10.1016/j.quageo.2008.10.001.
Markgraf V, 1989. Palaeoclimates in central and south America since 18,000 BP based on pollen and lake-level records. Quaternary Science Reviews 8(1): 1–24, DOI 10.1016/0277-3791(89)90018-8.
McCormac FG, Hogg AG, Blackwell PG, Buck CE, Higham TFG and Reimer PJ, 2004. SHCal04 Southern Hemisphere calibration, 0–11.0 cal kyr BP. Radiocarbon 46(3): 1087–1092.
Mejdahl V, 1979. Thermoluminescence dating — beta-dose attenuation in quartz grains. Archaeometry 21(1): 61–72, DOI 10.1111/j.1475-4754.1979.tb00241.x.
Mingorance F, 2006. Morfometría de la escarpa de falla histórica identificada al norte del cerro La Cal, zona de falla La Cal, Mendoza (Morphometry of the historic fault scarp identfied north of Cerro La Cal, La Cal Fault Zone, Mendoza). Revista de la Asociación Geológica Argentina 61(4): 620–638 (in Spanish; Abstract in English).
Murray AS and Roberts RG, 1997. Determining the burial time of single grains of quartz using optically stimulated luminescence. Earth and Planetary Science Letters 152(1–4): 163–180, DOI 10.1016/S0012-821X(97)00150-7.
Murray AS and Wintle AG, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32(1): 57–73, DOI 10.1016/S1350-4487(99)00253-X.
Murray AS and Olley JM, 2002. Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz: a status re-view. Geochronometria 21: 1–16.
Murray AS and Wintle AG, 2003.The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37(4–5): 377–381, DOI 10.1016/S1350-4487(03)00053-2.
Niedermann S, 2002. Cosmic-Ray-Produced Noble Gases in Terrestrial Rocks: Dating Tools for Surface Processes. Reviews in Mineralogy and Geochemistry 47: 731–784.
Nissen E, Walker RT, Bayasgalan A, Carter A, Fattahi M, Molor E, Schnabel C, West AJ and Xu S, 2009. The late Quaternary slip-rate of the Har-Us-Nuur fault (Mongolian Altai) from cosmogenic 10Be and luminescence dating. Earth and Planetary Science Letters 286(3–4): 467–478, DOI 10.1016/j.epsl.2009.06.048.
Olgiati S and Ramos VA, 2003. Neotectónica Cuarternaria en el Anticlinal Borbollón, Provincia de Mendoza — Argentina (Quaternary neotectonics in the Borbollón anticline, Mendoza province — Argentina). 10° Congreso Geológico Chileno 11pp. (in Spanish).
Olley JM, Murray AS and Roberts RG, 1996. The effects of disequilibria in the uranium and thorium decay chains on burial dose rates in fluvial sediments. Quaternary Science Reviews 15(7): 751–760, DOI 10.1016/0277-3791(96)00026-1.
Olley JM, Caitcheon GG and Roberts RG, 1999. The origin of dose distributions in fluvial sediments, and the prospect of dating single grains from fluvial deposits using optically stimulated luminescence. Radiation Measurements 30(2): 207–217, DOI 10.1016/S1350-4487(99)00040-2.
Owen LA, Bright J, Finkel RC, Jaiswal MK, Kaufman DS, Mahan S, Radtke U, Schneider JS, Sharp W, Singhvi AK and Warren CN, 2007. Numerical dating of a Late Quaternary spit-shoreline complex at the northern end of Silver Lake playa, Mojave Desert, California: A comparison of the applicability of radiocarbon, luminescence, terrestrial cosmogenic nuclide, electron spin resonance, U-series and amino acid racemization methods. Quaternary International 166(1): 87–110, DOI 10.1016/j.quaint.2007.01.001.
Porat N, Wintle AG, Amit R and Enzel Y, 1996. Late Quaternary Earthquake Chronology from Luminescence Dating of Colluvial and Alluvial Deposits of the Arava Valley, Israel. Quaternary Research 46(2): 107–117, DOI 10.1006/qres.1996.0051.
Porat N, Duller GAT, Amit R, Zilberman E and Enzel Y, 2009. Recent faulting in the southern Arava, Dead Sea Transform: Evidence from single grain luminescence dating. Quaternary International 199(1–2): 34–44, DOI 10.1016/j.quaint.2007.08.039.
Porat N, Amit R, Enzel Y, Zilberman E, Avni Y, Ginat H and Gluck D, 2010. Abandonment ages of alluvial landforms in the hyperarid Negev determined by luminescence dating. Journal of Arid Environments 74(7): 861–869, DOI 10.1016/j.jaridenv.2009.10.018.
Prescott JR and Stephan LG, 1982. The contribution of cosmic radiation to the environmental dose for thermoluminescence dating. Latitude, altitude and depth dependence. PACT 6: 17–25.
Prescott JR and Hutton JT, 1988. Cosmic ray and gamma ray dosimetry for TL and ESR. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 14(1–2): 223–227, DOI 10.1016/1359-0189(88)90069-6.
Prescott JR and Hutton JT, 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Radiation Measurements 23(2–3): 497–500, DOI 10.1016/1350-4487(94)90086-8.
Preusser F, Geyh MA and Schlüchter C, 2003. Timing of Late Pleistocene climate change in lowland Switzerland. Quaternary Science Reviews 22(14): 1435–1445, DOI 10.1016/s0277-3791(03)00127-6.
Preusser F, Hajdas I and Ivy-Ochs S, 2008. Recent progress in Quaternary dating methods. Eiszeitalter und Gegenwart 57(1–2), E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart: 262pp.
Reimann T, Tsukamoto S, Naumann M and Frechen M, 2011. The potential of using K-rich feldspars for optical dating of young coastal sediments — a test case from Darss-Zingst peninsula (southern Baltic Sea coast). Quaternary Geochronology 6(2): 207–222, DOI 10.1016/j.quageo.2010.10.001.
Rittenour TM, 2008. Luminescence dating of fluvial deposits: applications to geomorphic, palaeoseismic and archaeological research. Boreas 37(4): 613–635, DOI 10.1111/j.1502-3885.2008.00056.x.
Roberts RG, Galbraith RF, Olley JM, Yoshida H and Laslett GM, 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia, part 2, Results and implications. Archaeometry 41(2): 365–395, DOI 10.1111/j.1475-4754.1999.tb00988.x.
Roberts HM and Wintle AG, 2001. Equivalent dose determinations for polymineralic fine-grains using the SAR protocol: application to a Holocene sequence of the Chinese Loess Plateau. Quaternary Science Reviews 20(5–9): 859–863, DOI 10.1016/S0277-3791(00)00051-2.
Robinson RAJ, Spencer JQG, Strecker MR, Richter A and Alonso RN, 2005. Luminescence dating of alluvial fans in intramontane basins of NW Argentina. In: Harvey AM, Mather AE and Stokes M, eds, Alluvial Fans: Geomorphology, Sedimentology, Dynamics. Geological Society Special Publication, London: 153–168 pp.
Rodnight H, 2008. How many equivalent dose values are needed to obtain a reproducible distribution? Ancient TL 26(1): 3–9.
Rodnight H, Duller GAT, Wintle AG and Tooth S, 2006. Assessing the reproducibility and accuracy of optical dating of fluvial deposits. Quaternary Geochronology 1(2): 109–120, DOI 10.1016/j.quageo.2006.05.017.
Salomon E, 2010. Paleoseismic investigations at the Cal thrust fault, Mendoza, Argentina. M.Sc. thesis, University of Münster, Mün-ster, Germany, 43 pp.
Sancho C, Peña JL, Rivelli F, Rhodes E and Muñoz A, 2008. Geomorphological evolution of the Tilcara alluvial fan (Jujuy Province, NW Argentina): Tectonic implications and palaeoenvironmental considerations. Journal of South American Earth Sciences 26(1): 68–77, DOI 10.1016/j.jsames.2008.03.005.
Schmidt S, Hetzel R, Kuhlmann J, Mingorance F and Ramos VA, 2011a. A note of caution on the use of boulders for exposure da-ting of depositional surfaces. Earth and Planetary Science Letters 302(1–2), 60–70, DOI 10.1016/j.epsl.2010.11.039.
Schmidt S, Hetzel R, Mingorance F and Ramos VA, 2011b. Coseismic displacements and Holocene slip rates for two active thrust faults at the mountain front of the Andean Precordillera (∼33°S). Tecton-ics 30, TC5011, DOI 10.1029/2011TC002932.
Sepúlveda E, 2001. Hoja Geológica 3369-II, Mendoza. Provincias de Mendoza y San Juan (Geological map 3369-II, Mendoza. Mendoza and San Juan province). Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino, Boletín 252, Buenos Aires: 55pp (in Spanish).
Siame LL, Bellier O, Sébrier M, Bourlès DL, Leturmy P, Perez M and Araujo M, 2002. Seismic hazard reappraisal from combined structural geology, geomorphology and cosmic ray exposure dating analyses: the Eastern Precordillera thrust system (NW Argentina). Geophysical Journal International 150(1): 241–260, DOI 10.1046/j.1365-246X.2002.01701.x.
Sohn MF, Mahan SA, Knott JR and Bowman DD, 2007. Luminescence ages for alluvial-fan deposits in Southern Death Valley: Implications for climate-driven sedimentation along a tectonically active mountain front. Quaternary International 166(1): 49–60, DOI 10.1016/j.quaint.2007.01.002.
Stokes S, Bray HE and Blum MD, 2001. Optical resetting in large drainage basins: tests of zeroing assumptions using single-aliquot procedures. Quaternary Science Reviews 20(5–9): 879–885, DOI 10.1016/S0277-3791(00)00045-7.
Stuiver M and Reimer PJ, 2011. CALIB Radiocarbon Calibration. (accessed May 2011).
Thomas PJ, Jain M, Juyal N and Singhvi AK, 2005. Comparison of single-grain and small-aliquot OSL dose estimates in <3000 years old river sediments from South India. Radiation Measurements 39(5): 457–469, DOI 10.1016/j.radmeas.2004.07.005.
Thomsen KJ, Jain M, Murray AS, Denby PM, Roy N and Bøtter-Jensen L, 2008. Minimizing feldspar OSL contamination in quartz UV-OSL using pulsed blue stimulation. Radiation Measurements 43(2–6): 752–757, DOI 10.1016/j.radmeas.2008.01.020.
Toms PS, King M, Zarate MA, Kemp RA and Foit FF, 2004. Geochemical characterization, correlation, and optical dating of tephra in alluvial sequences of central western Argentina. Quaternary Re-search 62(1): 60–75, DOI 10.1016/j.yqres.2004.05.005.
Vandenberghe D, Hossain SM, De Corte F and Van den haute P, 2003. Investigations on the origin of the equivalent dose distribution in a Dutch coversand. Radiation Measurements 37(4–5): 433–439, DOI 10.1016/s1350-4487(03)00051-9.
Wallinga J, 2002. Optically stimulated luminescence dating of fluvial deposits: a review. Boreas 31(4): 303–322, DOI 10.1111/j.1502-3885.2002.tb01076.x.
Wallinga J, Murray AS and Bøtter-Jensen L, 2002. Measurement of the dose in quartz in the presence of feldspar contamination. Radiation Protection Dosimetry 101(1–4): 367–370.
Walker M, 2005. Quaternary dating methods. John Wiley & Son Ltd, Chichester: 286pp.
Journals System - logo
Scroll to top