Review and assessment of the potential of post-IR IRSL dating methods to circumvent the problem of anomalous fading in feldspar luminescence
Bo Li 1
More details
Hide details
Centre for Archaeological Science, School of Earth and Environmental Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
Online publication date: 2014-06-22
Publication date: 2014-09-01
Geochronometria 2014;41(3):178-201
Quartz has been the main mineral used for optically stimulated luminescence (OSL) dating of sediments over the last decade. The quartz OSL signal, however, has been shown to saturate at relatively low doses of ∼200–400 Gy, making it difficult to be used for dating beyond about 200 thou-sand years (ka), unless the environmental dose rate is low. The infrared stimulated luminescence (IRSL) from feldspars has been shown to continue to grow to higher dose levels than quartz OSL. The application of IRSL dating of feldspars, however, has long been hampered by the anomalous fading effect. Recent progress in understanding anomalous fading of the infrared stimulated luminescence (IRSL) signals in potassium-feldspar has led to the development of post-IR IRSL (pIRIR) protocols and also a multiple elevated temperature (MET) stimulation (MET-pIRIR) protocol. These procedures have raised the prospect of isolating a non-fading IRSL component for dating Quaternary deposits containing feldspars. In this study, we review the recent progress made on (1) overcoming anomalous fading of feldspar, and (2) the development of pIRIR dating techniques for feldspar. The potential and problems associated with these methods are discussed.
Aitken MJ, 1985. Thermoluminescence dating. Academic press, London.
Aitken MJ, 1998. An Introduction to Optical Dating. Oxford University Press. London, 267 pp.
Alappat L, Tsukamoto S, Singh P, Srikanth D, Ramesh R and Frechen M, 2010. Chronology of Cauvery Delta Sediments from Shallow Subsurface Cores Using Elevated-Temperature Post-Ir Irsl Dating of Feldspar. Geochronometria 37: 37–47, DOI 10.2478/v10003-010-0025-1.
Andersen MT, Jain M and Tidemand-Lichtenberg P, 2012. Red-IR stimulated luminescence in K-feldspar: Single or multiple trap origin? Journal of Applied Physics 112: 043507, DOI 10.1063/1.4745018.
Auclair M, Lamothe M and Huot S, 2003. Measurement of anomalous fading for feldspar IRSL using SAR. Radiation Measurements 37(4–5): 487–492, DOI 10.1016/S1350-4487(03)00018-0.
Baril MR and Huntley DJ, 2003. Infrared stimulated luminescence and phosphorescence spectra of irradiated feldspars. Journal of Physics: Condensed Matter 15(46): 8029–8048, DOI 10.1088/0953-8984/15/46/018.
Buylaert JP, Jain M, Murray AS, Thomsen KJ, Thiel C and Sohbati R, 2012. A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments. Boreas 41(3): 435–451, DOI 10.1111/j.1502-3885.2012.00248.x.
Buylaert JP, Murray AS, Thomsen KJ and Jain M, 2009. Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiation Measurements 44(5–6): 560–565, DOI 10.1016/j.radmeas.2009.02.007.
Buylaert JP, Thiel C, Murray AS, Vandenberghe DAG, Yi SW and Lu HY, 2011. IRSL and post-IR IRSL residual doses recorded in modern dust samples from the Chinese Loess Plateau. Geochronometria 38(4): 432–440, DOI 10.2478/s13386-011-0047-0.
Chen G, Murray AS and Li SH, 2001. Effect of heating on the quartz dose-response curve. Radiation Measurements 33(1): 59–63, DOI 10.1016/S1350-4487(00)00134-7.
Chen YW, Li SH and Li B, 2013. Residual doses and sensitivity change of post IR IRSL signals from potassium feldspar under different bleaching conditions. Geochronometria 40(4): 229–238, DOI 10.2478/s13386-013-0128-3.
Fu X, Li B and Li SH, 2012a. Testing a multi-step post-IR IRSL dating method using polymineral fine grains from Chinese loess. Quaternary Geochronology 10: 8–15, DOI 10.1016/j.quageo.2011.12.004.
Fu X and Li SH, 2013. A modified multi-elevated-temperature post-IR IRSL protocol for dating of Holocene sediments using K-feldspar. Quaternary Geochronology 17: 44–54, DOI 10.1016/j.quageo.2013.02.004.
Fu X, Zhang JF and Zhou LP, 2012b. Comparison of the properties of various optically stimulated luminescence signals from potassium feldspar. Radiation Measurements 47(3): 210–218, DOI 10.1016/j.radmeas.2011.12.007.
Galbraith RF, Roberts RG, Laslett GM, Yoshida H and Olley JM, 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia, part 1, Experimental design and statistical models. Archaeometry 41(2): 339–364, DOI 10.1111/j.1475-4754.1999.tb00987.x.
Galbraith RF and Roberts RG, 2012. Statistical aspects of equivalent dose and error calculation and display in OSL dating: an overview and some recommendations. Quaternary Geochronology 11: 1–27, DOI 10.1016/j.quageo.2012.04.020.
Gliganic LA, Jacobs Z, Roberts RG, Dominguez-Rodrigo M and Mabulla AZP, 2012. New ages for Middle and Later Stone Age deposits at Mumba rockshelter, Tanzania: Optically stimulated luminescence dating of quartz and feldspar grains. Journal of Human Evolution 62(4): 533–547, DOI 10.1016/j.jhevol.2012.02.004.
Guérin G and Valladas H, 1980. Thermoluminescene dating of volcanic plagioclases. Nature 286: 697–699, DOI 10.1038/286697a0.
Huntley DJ, 2011. Comment on “Isochron dating of sediments using luminescence of K-feldspar grains” by B. Li et al. Journal of Geophysical Research: Earth Surface 116(F1): F01012, DOI 10.1029/2010JF001856.
Huntley DJ and Lamothe M, 2001. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Canadian Journal of Earth Sciences 38(7): 1093–1106, DOI 10.1139/e01-013.
Huntley DJ and Lian OB, 2006. Some observations on tunnelling of trapped electrons in feldspars and their implications for optical dating. Quaternary Science Reviews 25(19–20): 2503–2512, DOI 10.1016/j.quascirev.2005.05.011.
Hütt G, Jaek I and Tchonka J, 1988. Optical dating: K-feldspars optical response stimulation spectra. Quaternary Science Reviews 7(3–4): 381–385, DOI 10.1016/0277-3791(88)90033-9.
Jain M and Ankjærgaard C, 2011. Towards a non-fading signal in feldspar: insight into charge transport and tunnelling from time-resolved optically stimulated luminescence. Radiation Measurements 46(3): 292–309, DOI 10.1016/j.radmeas.2010.12.004.
Jain M and Singhvi AK, 2001. Limits to depletion of blue-green light stimulated luminescence in feldspars: implications for quartz dating. Radiation Measurements 33(6): 883–892, DOI 10.1016/S1350-4487(01)00104-4.
Kars RH, Busschers FS and Wallinga J, 2012. Validating post IR-IRSL dating on K-feldspars through comparison with quartz OSL ages. Quaternary Geochronology 12: 74–86, DOI 10.1016/j.quageo.2012.05.001.
Kars RH, Wallinga J and Cohen KM, 2008. A new approach towards anomalous fading correction for feldspar IRSL dating — tests on samples in field saturation. Radiation Measurements 43(2–6): 786–790, DOI 10.1016/j.radmeas.2008.01.021.
Lamothe M and Auclair M, 1997. Assessing the datability of young sediments by IRSL using an intrinsic laboratory protocol. Radiation Measurements 27(2): 107–117, DOI 10.1016/S1350-4487(96)00140-0.
Lamothe M and Auclair M, 1999. A solution to anomalous fading and age shortfalls in optical dating of feldspar minerals. Earth and Planetary Science Letters 171(3): 319–323, DOI 10.1016/S0012-821X(99)00180-6.
Lamothe M, Auclair M, Hamzaoui C and Huot S, 2003. Towards a prediction of long-term anomalous fading of feldspar IRSL. Radiation Measurements 37(4-5): 493–498, DOI 10.1016/S1350-4487(03)00016-7.
Li B and Li SH, 2008. Investigations of the dose-dependent anomalous fading rate of feldspar from sediments. Journal of Physics D-Applied Physics 41: 225502, DOI 10.1088/0022-3727/41/22/225502.
Li B and Li SH, 2011a. Luminescence dating of K-feldspar from sediments: A protocol without anomalous fading correction. Quaternary Geochronology 6(5): 468–479, DOI 10.1016/j.quageo.2011.05.001.
Li B and Li SH, 2011b. Thermal stability of infrared stimulated luminescence of sedimentary K-feldspar. Radiation Measurements 46(1): 29–36, DOI 10.1016/j.radmeas.2010.10.002.
Li B and Li SH, 2012a. Luminescence dating of Chinese loess beyond 130 ka using the non-fading signal from K-feldspar. Quaternary Geochronology 10: 24–31, DOI 10.1016/j.quageo.2011.12.005.
Li B and Li SH, 2012b. A reply to the comments by Thomsen et al. on “Luminescence dating of K-feldspar from sediments: A protocol without anomalous fading correction”. Quaternary Geochronology 8: 49–51, DOI 10.1016/j.quageo.2011.10.001.
Li B and Li SH, 2013. The effect of band-tail states on the thermal stability of the infrared stimulated luminescence from K-feldspar. Journal of Luminescence 136: 5–10, DOI 10.1016/j.jlumin.2012.08.043.
Li B, Li SH and Wintle AG, 2008a. Overcoming environmental dose rate changes in luminescence dating of waterlain deposits. Geochronometria 30: 33–40, DOI 10.2478/v10003-008-0003-z.
Li B, Li SH, Wintle AG and Zhao H, 2007a. Isochron measurements of naturally irradiated K-feldspar grains. Radiation Measurements 42(8): 1315–1327, DOI 10.1016/j.radmeas.2007.09.008.
Li B, Li SH, Wintle AG and Zhao H, 2008b. Isochron dating of sediments using luminescence of K-feldspar grains. Journal of Geophysical Research: Earth Surface 113(F2): F02026, DOI 10.1029/2007JF000900.
Li B, Li SH and Zhao H, 2011. Reply to comment by Huntley on “Isochron dating of sediments using luminescence of K-feldspar grains”. Journal of Geophysical Research: Earth Surface 116(F1): F01013, DOI 10.1029/2010JF001931.
Li B, Roberts RG and Jacobs Z, 2013. On the dose dependency of the bleachable and non-bleachable components of IRSL from K-feldspar: improved procedures for the dating of Quaternary sediments. Quaternary Geochronology 17: 1–13, DOI 10.1016/j.quageo.2013.03.006.
Li SH, Chen YY, Li B, Sun JM and Yang LR, 2007b. OSL dating of sediments from desert in northern China. Quaternary Geochronology 2(1–4): 23–28, DOI 10.1016/j.quageo.2006.05.034.
Li SH and Tso MYW, 1997. Lifetime determination of OSL signals from potassium feldspar. Radiation Measurements 27(2): 119–121, DOI 10.1016/S1350-4487 (96)00145-X.
Li SH, Tso MYW and Wong NWL, 1997. Parameters of OSL traps determined with various linear heating rates. Radiation Measurements 27(1): 43–47, DOI 10.1016/S1350-4487(96)00137-0.
Lowick SE, Trauerstein M and Preusser F, 2012. Testing the application of post IR-IRSL dating to fine grain waterlain sediments. Quaternary Geochronology 8: 33–40, DOI 10.1016/j.quageo.2011.12.003.
Morthekai P, Jain M, Murray AS, Thomsen KJ and Bøtter-Jensen L, 2008. Fading characteristics of martian analogue materials and the applicability of a correction procedure. Radiation Measurements 43(2–6): 672–678, DOI 10.1016/j.radmeas.2008.02.019.
Murray AS, Buylaert JP, Thomsen KJ and Jain M, 2009. The effect of preheating on the IRSL signal from feldspar. Radiation Measurements 44(5–6): 554–559, DOI 10.1016/j.radmeas.2009.02.004.
Murray AS and Roberts RG, 1998. Measurement of the equivalent dose in quartz using a regenerative-dose single-aliquot protocol. Radiation Measurements 29(5): 503–515, DOI 10.1016/S1350-4487(98)00044-4.
Murray AS, Thomsen KJ, Masuda N, Buylaert JP and Jain M, 2012. Identifying well-bleached quartz using the different bleaching rates of quartz and feldspar luminescence signals. Radiation Measurements 47(9): 688–695, DOI 10.1016/j.radmeas.2012.05.006.
Murray AS and Wintle AG, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32(1): 57–73, DOI 10.1016/S1350-4487(99)00253-X.
Poolton NRJ, Kars RH, Wallinga J and Bos AJJ, 2009. Direct evidence for the participation of band-tails and excited-state tunnelling in the luminescence of irradiated feldspars. Journal of Physics: Condensed Matter 21: 485505, DOI 10.1088/0953-8984/21/48/485505.
Poolton NRJ, Ozanyan KB, Wallinga J, Murray AS and Bøtter-Jensen L, 2002. Electrons in feldspar II: a consideration of the influence of conduction band-tail states on luminescence processes. Physics and Chemistry of Minerals 29(3): 217–225, DOI 10.1007/s00269-001-0218-2.
Qin JT and Zhou LP, 2012. Effects of thermally transferred signals in the post-IR IRSL SAR protocol. Radiation Measurements 47(9): 710–715, DOI 10.1016/j.radmeas.2011.12.011.
Ramos AM, Cunha PP, Cunha LS, Gomes A, Lopes FC, Buylaert JP and Murray AS, 2012. The River Mondego terraces at the Figueira da Foz coastal area (western central Portugal): Geomorphological and sedimentological characterization of a terrace staircase affected by differential uplift and glacioeustasy. Geomorphology 165-166: 107–123, DOI 10.1016/j.geomorph.2012.03.037.
Reimann T and Tsukamoto S, 2012. Dating the recent past (<500 years) by post-IR IRSL feldspar — Examples from the North Sea and Baltic Sea coast. Quaternary Geochronology 10: 180–187, DOI 10.1016/j.quageo.2012.04.011.
Reimann T, Tsukamoto S, Naumann M and Frechen M, 2011. The potential of using K-rich feldspars for optical dating of young coastal sediments — A test case from Darss-Zingst peninsula (southern Baltic Sea coast). Quaternary Geochronology 6(2): 207–222, DOI 10.1016/j.quageo.2010.10.001.
Roberts HM, 2012. Testing Post-IR IRSL protocols for minimising fading in feldspars, using Alaskan loess with independent chronological control. Radiation Measurements 47(9): 716–724, DOI 10.1016/j.radmeas.2012.03.022.
Roberts RG, Galbraith RF, Olley JM, Yoshida H and Laslett GM, 1999. Optical dating of single and multiple grains of quartz from jinmium rock shelter, northern Australia, part 2, Results and implications. Archaeometry 41(2): 365–395, DOI 10.1111/j.1475-4754.1999.tb00988.x.
Roskosch J, Tsukamoto S, Meinsen J, Frechen M and Winsemann J, 2012. Luminescence dating of an Upper Pleistocene alluvial fan and aeolian sandsheet complex: The Senne in the Munsterland Embayment, NW Germany. Quaternary Geochronology 10: 94–101, DOI 10.1016/j.quageo.2012.02.012.
Sanderson DCW and Clark RJ, 1994. Pulsed photostimulated luminescence of alkali feldspars. Radiation Measurements 23(2–3): 633–639, DOI 10.1016/1350-4487(94)90112-0.
Schatz AK, Buylaert JP, Murray A, Stevens T and Scholten T, 2012. Establishing a luminescence chronology for a palaeosol-loess profile at Tokaj (Hungary): A comparison of quartz OSL and polymineral IRSL signals. Quaternary Geochronology 10: 68–74, DOI 10.1016/j.quageo.2012.02.018.
Schmidt ED, Frechen M, Murray AS, Tsukamoto S and Bittmann F, 2011. Luminescence chronology of the loess record from the Tonchesberg section: A comparison of using quartz and feldspar as dosimeter to extend the age range beyond the Eemian. Quaternary International 234(1–2): 10–22, DOI 10.1016/j.quaint.2010.07.012.
Sohbati R, Murray AS, Buylaert JP, Ortuno M, Cunha PP and Masana E, 2012. Luminescence dating of Pleistocene alluvial sediments affected by the Alhama de Murcia fault (eastern Betics, Spain) — a comparison between OSL, IRSL and post-IR IRSL ages. Boreas 41(2): 250–262, DOI 10.1111/j.1502-3885.2011.00230.x.
Spooner NA, 1992. Optical Dating: Preliminary-Results on the Anomalous Fading of Luminescence from Feldspars. Quaternary Science Reviews 11(1–2): 139–145, DOI 10.1016/0277-3791(92)90055-D.
Spooner NA, 1994. The anomalous fading of infrared-stimulated luminescence from feldspars. Radiation Measurements 23(2–3): 625–632, DOI 10.1016/1350-4487(94)90111-2.
Stevens T, Markovic SB, Zech M, Hambach U and Sumegi P, 2011. Dust deposition and climate in the Carpathian Basin over an independently dated last glacial-interglacial cycle. Quaternary Science Reviews 30(5–6): 662–681, DOI 10.1016/j.quascirev.2010.12.011.
Templer RH, 1985. The Removal of Anomalous Fading in Zircon. Nuclear Tracks and Radiation Measurements 10(4–6): 531–537, DOI 10.1016/0735-245X(85)90054-7.
Thiel C, Buylaert JP, Murray A, Terhorst B, Hofer I, Tsukamoto S and Frechen M, 2011a. Luminescence dating of the Stratzing loess profile (Austria) - testing the potential of an elevated temperature post-IR IRSL protocol. Quaternary International 234(1–2): 23–31, DOI 10.1016/j.quaint.2010.05.018.
Thiel C, Buylaert JP, Murray AS, Elmejdoub N and Jedoui Y, 2012. A comparison of TT-OSL and post-IR IRSL dating of coastal deposits on Cap Bon peninsula, north-eastern Tunisia. Quaternary Geochronology 10: 209–217, DOI 10.1016/j.quageo.2012.03.010.
Thiel C, Buylaert JP, Murray AS and Tsukamoto S, 2011b. On the applicability of post-IR IRSL dating to Japanese loess. Geochronometria 38(4): 369–378, DOI 10.2478/s13386-011-0043-4.
Thiel C, Buylaert J-P, Murray AS, Terhorst B, Tsukamoto S, Frechen M and Sprafke T, 2011c. Investigating the chronostratigraphy of prominent palaeosols in Lower Austria using post-IR IRSL dating. Quaternary Science Journal 60(1): 137–152, DOI 10.3285/eg.60.1.10.
Thiel C, Terhorst B, Jaburová I, Buylaert J-P, Murray AS, Fladerer FA, Damm B, Frechen M and Ottner F, 2011d. Sedimentation and erosion processes in Middle to Late Pleistocene sequences exposed in the brickyard of Langenlois/Lower Austria. Geomorphology 135(3–4): 295–307, DOI 10.1016/j.geomorph.2011.02.011.
Thomsen KJ, Murray AS and Jain M, 2011. Stability of IRSL signals from sedimentary K-feldspar samples. Geochronometria 38(1): 1–13, DOI 10.2478/s13386-011-0003-z.
Thomsen KJ, Murray AS, Jain M and Botter-Jensen L, 2008. Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiation Measurements 43(9–10): 1474–1486, DOI 10.1016/j.radmeas.2008.06.002.
Thomsen KJ, Murray AS, Jain M and Buylaert JP, 2012. Re ‘Luminescence dating of K-feldspar from sediments: a protocol without anomalous fading correction’ by Bo Li and Sheng-Hua Li. Quaternary Geochronology 8: 46–48, DOI 10.1016/j.quageo.2011.07.002.
Tsukamoto S, Denby PM, Murray AS and Botter-Jensen L, 2006. Time-resolved luminescence from feldspars: New insight into fading. Radiation Measurements 41(7–8): 790–795, DOI 10.1016/j.radmeas.2006.05.013.
Valladas G and Valladas H, 1979. High temperature thermoluminescence. Proceedings of the 18th International Symposium on Archaeometry and Archaeological Prospection, Bonn: 506–510.
Vasiliniuc S, Vandenberghe DAG, Timar-Gabor A, Panaiotu C, Cosma C and van den Haute P, 2012. Testing the potential of elevated temperature post-IR IRSL signals for dating Romanian loess. Quaternary Geochronology 10: 75–80, DOI 10.1016/j.quageo.2012.02.014.
Visocekas R, 1985. Tunneling radiative recombination in labradorite: its association with anomalous fading of thermoluminescence. Nuclear Tracks and Radiation Measurements 10(4–6): 521–529, DOI 10.1016/0735-245X(85)90053-5.
Visocekas R, Spooner NA, Zink A and Blanc P, 1994. Tunnel afterglow, fading and infrared-emission in thermoluminescence of feldspars. Radiation Measurements 23(2–3): 377–385, DOI 10 (4–6): 521–529, DOI 10.1016/0735-245X(85)90053-5.
Wacha L and Frechen M, 2011. The geochronology of the “Gorjanovic loess section” in Vukovar, Croatia. Quaternary International 240(1–2): 87–99, DOI 10.1016/j.quaint.2011.04.010.
Wallinga J, Murray A and Wintle A, 2000. The single-aliquot regenerative-dose (SAR) protocol applied to coarse-grain feldspar. Radiation Measurements 32(5–6): 529–533, DOI 10.1016/S1350-4487(00)00091-3.
Wang XL and Wintle AG, 2013. Investigating the contribution of recuperated TL to post-IR IRSL signals in a perthitic feldspar. Radiation Measurements 49: 82–87, DOI 10.1016/j.radmeas.2012.12.003.
Watanuki T, Murray AS and Tsukamoto S, 2005. Quartz and polymineral luminescence dating of Japanese loess over the last 0.6 Ma: Comparison with an independent chronology. Earth and Planetary Science Letters 240(3–4): 774–789, DOI 10.1016/j.epsl.2005.09.027.
Wintle AG, 1973. Anomalous fading of thermoluminescence in mineral samples. Nature 245: 143–144, DOI 10.1038/245143a0.
Wintle AG and Murray AS, 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41(4): 369–391, DOI 10.1016/j.radmeas.2005.11.001.
Zhao H and Li SH, 2002. Luminescence isochron dating: a new approach using different grain sizes. Radiation Protection Dosimetry 101: 333–338.
Journals System - logo
Scroll to top