RESEARCH PAPER
Variations in the radiocarbon calibration curves around known and suspected Δ¹⁴C excursions
 
More details
Hide details
1
Laboratory for Environmental Radioisotope Analyses, AGH University of Kraków, Poland
 
2
Institute of Physics - Centre for Science and Education, Silesian University of Technology, Poland
 
3
Department of General Geology and Geoturism, AGH University of Kraków, Poland
 
 
Submission date: 2024-07-25
 
 
Acceptance date: 2025-11-07
 
 
Online publication date: 2025-11-27
 
 
Publication date: 2025-11-27
 
 
Corresponding author
Jacek Pawlyta   

Laboratory for Environmental Radioisotope Analyses, AGH University of Kraków, Miękinia 381, 32-065, Krzeszowice, Poland
 
 
Geochronometria 2025;52(1)
 
KEYWORDS
TOPICS
ABSTRACT
The rapid increase in tree-ring radiocarbon concentration of 12‰ between 774–775 CE marked the first confirmed cosmic-origin event identified through annual tree-ring records. Subsequent studies have in-dependently verified this signal in dendrochronologically dated material from multiple regions, confirm-ing its global nature. Since then, several comparable events have been identified across different peri-ods. These radiocarbon spikes are of particular importance because they provide precise annual tie-points that can significantly improve chronological resolution in fields such as archaeology and geology. In this paper, we present a simple method for detecting such events in high-resolution radiocarbon da-tasets.
ACKNOWLEDGEMENTS
This work was partly supported by the National Science Centre, Poland, grant UMO-2022/45/B/ST10/02095, EUROPLANET24 grant 20-EPN2-018 and Nagoya Uni-versity ISEE -International Joint Research Program-00027. Publication supported as part of the Excellence Initiative – Research University program implemented at the Silesian University of Technology, year 2022 (14/020/SDU/10-27-01). This work was partly supported by AGH University grant 16.16.140.315.
REFERENCES (47)
1.
Brehm N, Bayliss A, Christl M, Synal HA, Adolphi F, Beer J, Kromer B, Muscheler R, Solanki SK, Usoskin I, Bleicher N, Bollhalder S, Tyers C and Wacker L, 2021. Eleven-Year Solar Cycles over the Last Millennium Revealed by Radiocarbon in Tree Rings. Nature Geoscience 14(1): 10–15, DOI 10.1038/s41561-020-00674-0.
 
2.
Brehm N, Christl M, Adolphi F, Muscheler R, Synal, H.-A, Mekhaldi F, Paleari C, Leuschner HH, Bayliss, A, Nicolussi K, Pichler T, Schlüchter C, Pearson C, Salzer M, Fonti P, Nievergelt D, Hantemirov R, Brown D, Usoskin, I and Wacker L, 2022. Tree rings reveal two strong solar proton events in 7176 and 5259 BCE. Nature Communications, DOI 10.21203/rs.3.rs-753272/v1.
 
3.
Büntgen U, Wacker L, Galván JD, Arnold S, Arseneault D, Baillie M, Beer J, Bernabei M, Bleicher N, Boswijk G, et al., 2018. Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE. Nature Communications 9(1): 3605, DOI 10.1038/s41467-018-06036-0.
 
4.
Fogtmann-Schulz A, Ostbo SM, Nielsen SGB, Olsen J, Karoff C and Knudsen MF, 2017. Cosmic ray event in 994 CE recorded in radiocarbon from Danish oak. Geophysical Research Letters 44(16): 8621–8628, DOI 10.1002/2017GL074208.
 
5.
Güttler D, Beer J, Bleicher N, Boswijk G, Hogg AG, Palmer JG, Vockenhuber C, Wacker L and Wunder J, 2015a. Worldwide detection of a rapid increase of cosmogenic 14C in AD 775. Poster presented at the Nuclear Physics in Astrophysics.
 
6.
Güttler D, Adolphi F, Beer J, Bleicher N, Boswijk G, Christl M, Hogg A, Palmer j, Vockenhuber C, Wacker L and Wunder J, 2015b. Rapid increase in cosmogenic 14C in AD 775 measured in New Zealand kauri trees indicates short-lived increase in 14C production spanning both hemispheres. Earth and Planetary Science Letters 411: 290–297, DOI 10.1016/j.epsl.2014.11.048.
 
7.
Hakozaki M, Miyake F, Nakamura T, Kimura K, Masuda K and Okuno M, 2018. Verification of the annual dating of the 10th century Baitoushan volcano eruption based on an AD 774–775 radiocarbon spike. Radiocarbon 60(1): 261–268, DOI 10.1017/RDC.2017.75.
 
8.
Heaton TJ, Blaauw M, Blackwell PG, Bronk Ramsey C, Reimer PJ, and Scott EM, 2020. ‘The IntCal20 Approach to Radiocarbon Calibration Curve Construction: A New Methodology Using Bayesian Splines and Errors-in-Variables’. Radiocarbon 62(4): 821–863. DOI 10.1017/RDC.2020.46.
 
9.
Hogg AG, Heaton TJ, Hua Q, Palmer JG, Turney CSM and Wacker L, 2020. SHCal20 Southern hemisphere calibration, 0–55,000 years cal BP. Radiocarbon 62(4): 759–778, DOI 10.1017/RDC.2020.59.
 
10.
Jöckel P, Lawrence MG and Brenninkmeijer CAM, 1999. Simulations of cosmogenic14 CO using the three‐dimensional atmospheric model MATCH: Effects of14 C production distribution and the solar cycle. Journal of Geophysical Research: Atmospheres 104(D9): 11733–11743. DOI 10.1029/1999JD900061.
 
11.
Jull AJT, Panyushkina IP, Lange TE, Kukarskih VV, Myglan VS, Clark KJ, Salzer MW, Burr GS and Leavitt SW, 2014. Excursions in the 14C record at A.D. 774–775 in tree rings from Russia and America. Geophysical Research Letters 41(8): 3004–3010, DOI 10.1002/2014GL059874.
 
12.
Jull AJT, Panyushkina I, Miyake F, Masuda K, Nakamura T, Mitsutani T, Lange TE, Cruz R, Baisan C, Janovics R, Varga T and Molnar M, 2018. More rapid 14C excursions in the tree-ring record: A record of different kind of solar activity at about 800 BC? Radiocarbon 60(4): 1237–1248, DOI 10.1017/RDC.2018.53.
 
13.
Kanzawa K, Miyake F, Horiuchi K, Sasa K, Takano K, Matsumura M, et al., 2021. High-resolution 10Be and 36Cl data from the Antarctic Dome Fuji ice core (∼100 years around 5480 BCE): An unusual grand solar minimum occurrence? Journal of Geophysical Research: Space Physics 126: e2021JA029378, DOI 10.1029/2021JA029378.
 
14.
Kovaltsov GA, Mishev A and Usoskin IG, 2012. A new model of cosmic production of radiocarbon 14C in the atmosphere. Earth and Planetary Sciences Letters 337–338: 114–120, DOI 10.1016/j.epsl.2012.05.036.
 
15.
Krąpiec M, Rakowski AZ, Pawlyta J, Wiktorowski D and Bolka M, 2020. Absolute dendrochronological scale for pine (Pinus sylvestris L.) from Ujscie (N_W Poland), dated using rapid atmospheric 14C changes. Radiocarbon 63(4): 1205–1214, DOI 10.1017/RDC.2020.116.
 
16.
Kuitems M, Wallace BL, Lindsay C, et al., 2022. Evidence for European presence in the Americas in ad 1021. Nature 601: 388–391, DOI 10.1038/s41586-021-03972-8.
 
17.
Manning SW and Kromer B, 2012. Considerations of the Scale of Radiocarbon Offsets in the East Mediterranean, and Considering a Case for the Latest (Most Recent) Likely Date for the Santorini Eruption. Radiocarbon 54(3–4): 449–474, DOI 10.1017/S0033822200047202.
 
18.
Manning SW, Griggs C, Lorentzen B, Bronk Ramsey C, Chivall D, Jull AJT and Lange TE, 2018. Fluctuating Radiocarbon Offsets Observed in the Southern Levant and Implications for Archaeological Chronology Debates. Proceedings of the National Academy of Sciences of the United States of America 115: 6141–6146.
 
19.
Mayall NU, 1939. The Crab Nebula, a probable supernova. Astronomical Society of the Pacific Leaflets 3: 145.
 
20.
McCormac FG, Hogg AG, Higham TFG, Lynch-Stieglitz J, Broecker WS, Baillie MGL, Palmer J, Xiong L, Pilcher JR, Brown D and Hoper, ST, 1998. Temporal variation in the interhemispheric C-14 offset. Geophysical Research Letters 25: 1321–1324, DOI 10.1029/98GL01065.
 
21.
Mekhaldi F, Muscheler R, Adolphi F, Aldahan A, Beer J, McConnell JR, Possnert G, Sigl M, Svensson A, Synal H-A, Welten KC and Woodruff TE, 2015. Multiradionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and 993/4. Nature Communications 6: 8611, DOI 10.1038/ncomms9611.
 
22.
Miyake F, Nagaya K, Masuda K and Nakamura T, 2012. A signature of cosmic-ray increases in AD 774–775 from tree rings in Japan. Nature 486(7402): 240–242, DOI 10.1038/nature11123.
 
23.
Miyake F, Masuda K and Nakamura T, 2013. Another rapid event in the carbon-14 content of tree rings. Nature Communications 4: 1748, DOI 10.1038/ncomms2873.
 
24.
Miyake F, Masuda K, Hakozaki M, Nakamura T, Tokanai F, Kato K, Kimura K and Mitsutani T, 2014. Verification of the cosmic-ray event in AD 993-994 by using a Japanese Hinoki tree. Radiocarbon 56(3): 1184–1194, DOI 10.2458/56.17769.
 
25.
Miyake F, Jull AJT, Panyushkina IP, Wacker L, Salzer M, Baisan CH, Lange T, Cruz R, Masuda K and Nakamura T, 2017. Lagrge 14C excursion in 5480 BC indicates an abnormal sun in the mid-Holocene. Proceedings of the National Academy of Sciences of the United States of America 114(5): 881–884, DOI 10.1073/pnas.1613144114.
 
26.
Miyake F, Panyushkina IP, Jull AJT, Adolphi F, Brehm N, Helama S, Kanzawa K, Moriya T, Muscheler R, Nicolussi K, Oinonen M, Salzer M, Takeyama M, Tokanai F and Wacker L, 2021. A Single-Year Cosmic Ray Event at 5410 BCE Registered in 14C of Tree Rings. Geophysical Research Letters 48(11): e2021GL093419, DOI 10.1029/2021GL093419.
 
27.
Miyahara H, Tokanai F, Moriya T, Takeyama M, Sakurai H, Ohyama M, Horuchi K and Hotta H, 2022. Recurrent large-scale solar proton events before the onset of the Wolf Grand Solar Minimum. Geophysical Research Letters 49: e2021GL097201, DOI 10.1029/2021GL097201.
 
28.
Molnar M, Rinyu L, Veres M, Seiler M, Wacker L, Synal H-A, 2016. EnvironMICADAS: A Mini 14C AMS with Enhanced Gas Ion Source Interface in the Hertelendi Laboratory of Environmental Studies (HEKAL), Hungary. Radiocarbon 55(2–3): 338–344, DOI 10.1017/S0033822200057453.
 
29.
O’Hare P, Mekhaldi F, Adolphi F, Reisbeck G, Aldahan A, Anderberg E, Beer J, Christl M, Fahrni S, Synal H-A, Park J, Possnert G, Southon J, Bard E and Muschler R, 2019. Multiradionuclide evidence for an extreme solar proton event around 2,610 B.P. (∼660 BC). Proceedings of the National Academy of Sciences of the United States of America PNAS 116(13): 5961–5966, DOI 10.1073/pnas.1815725116.
 
30.
Oppenheimer C, Wacker L, Xu J, Galván JD, Stoffel M, Guillet S, Corona C, Sigl M, Cosmo ND, Hajdas I, Pan B, Breuker R, Schneider L, Esper J, Fei J, Hammond JOS and Büntgen U, 2017. Multi-proxy dating the “Millennium Eruption” of Changbaishan to late 946 CE. Quaternary Science Reviews 158: 164–171, DOI 10.1016/j.quascirev.2016.12.024.
 
31.
Paleari CI, Mekhaldi F, Adolphi F, Christl M, Vockenhuber C, Gautschi P, Beer J, Brehm N, Erhardt T, Synal HA, Wacker L, Wilhelms F and Muscheler R, 2022. Cosmogenic radionuclides reveal an extreme solar particle storm near a solar minimum 9125 years BP. Nature Communications 13: 214, DOI 10.1038/s41467-021-27891-4. PMID: 35017519; PMCID: PMC8752676.
 
32.
Park J, Southon J, Fahrni S, Creasman PP and Mewaldt R, 2017. Relationship between solar activity and Δ14C peaks in AD 775, AD 994, and 660 BC. Radiocarbon 59(4): 1147–1156, DOI 10.1017/RDC.2017.59.
 
33.
Pavlov A, Blinov AV, Konstantinov AN, Ostryakov VN, VasilyevGI, VdovinaMA and Volkov PA, 2013. AD 775 pulse of cosmogenic radionuclides production as imprint of a Galactic gamma-ray burst. Monthly Notices of The Royal Astronomical Society 435(4): 2878–2884, DOI 10.1093/mnras/stt1468.
 
34.
Pearson GW, Pilcher JR, Baillie MGL, Corbett DM and Qua F, 1986. High-Precision C-14 Measurement of Irish Oaks to Show the Natural C-14 Variations from AD 1840 to 5210 BC. Radiocarbon 28: 911–934, DOI 10.1017/S0033822200060197.
 
35.
Philipsen B, Feveile C, Olsen J and Sindbaek SM, 2022. Single-year radiocarbon dating anchors Viking Age trade cycles in time. Nature 601: 392–396, DOI 10.1038/s41586-021-04240-5.
 
36.
Rakowski AZ, Krąpiec M, Huels M, Pawlyta J, Dreves A and Meadows J, 2015. Increase of radiocarbon concentration in tree rings from Kujawy village (SE Poland) around AD 774–775. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 361: 564–568, DOI 10.1016/j.nimb.2015.03.035.
 
37.
Rakowski AZ, Krąpiec M, Huels M, Pawlyta J and Boudin M, 2018. Increase in radiocarbon concentration in tree rings from Kujawy village (SE Poland) around AD 993–994. Radiocarbon 60(4): 1249–1258, DOI 10.1017/rdc.2018.74.
 
38.
Rakowski AZ, Krąpiec M, Huels M, Pawlyta J, Hamann Ch and Wiktorowski D, 2019. Abrupt increase of radiocarbon concentration in 660 BC in the tree rings from Grabie near Karkow (SE Poland). Radiocarbon 61(5): 1327–1335, DOI 10.1017/RDC.2019.40.
 
39.
Rakowski AZ, Pawlyta J, Miyahara H, Krąpiec M, Molnár M, Wiktorowski D and Minami M, 2024. Radiocarbon concentration in sub-annual tree rings from Poland around 660 BCE. Radiocarbon 66(6): 1981–1990, DOI 10.1017/RDC.2023.79.
 
40.
Reimer P, Austin W, Bard E, Bayliss A, Blackwell P, Bronk Ramsey C, et al., 2020. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon 62(4): 725–757, DOI 10.1017/RDC.2020.41.
 
41.
Sakamoto M, Hakozaki M, Nakao N, Nakatsuka T, 2017. Fine structure and reproducibility of radiocarbon ages of middle to early modern Japanese tree rings. Radiocarbon 59: 1907–1917, DOI 10.1017/RDC.2017.133.
 
42.
Sakurai H, Tokanai F, Miyake F, Horiuchi K, Masuda K, Miyahara H, Ohyama M, Sakamoto M, Mitsurani T and Moriya T, 2020. Prolonged production of 14C during the ~660 BCE solar proton event from Japanese tree rings. Scientific Reports 10: 660, DOI 10.1038/s41598-019-57273-2.
 
43.
Stuiver M and Braziunas TF, 1993. Sun, ocean, climate and atmospheric 14CO2: an evaluation of causal and spectral relationships. Holocene 3: 289–305.
 
44.
Synal H-A, Stocker M and Suter M, 2007. MICADAS: a new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research B 259(1): 7–13, DOI 10.1016/j.nimb.2007.01.138.
 
45.
Tarrasi F, Marzaioli F, Bouompane R, Passariello I, Capano M, Helama S, Oinonen M, Nojd P, Uusitalo J, Jull AJT, Panyushkina IP, Baisan C, Molnar M, Varga T, Kovaltsov G, Poluianov S and Usoskin I, 2020. Can the 14C production in 1055 CE be affected by SN1054? Radiocarbon 62(5): 1403–1418, DOI 10.1017/RDC.2020.58.
 
46.
Wacker L, Guttler D, Goll J, Hurni J, Synal H-A and Walti N, 2014. Radiocarbon dating to a single year by means of rapid atmospheric 14C changes. Radiocarbon 56(2): 573–579, DOI 10.2458/56.17634.
 
47.
Wacker et al. in preparation.
 
eISSN:1897-1695
ISSN:1733-8387
Journals System - logo
Scroll to top