RESEARCH PAPER
The Helios OSL reader: a portable system for dating and dosimetry applications
 
More details
Hide details
1
Institute of Physics, Faculty of Science and Technology, Jan Dlugosz University, Poland
 
2
Research and Development Department, Zero-Rad Sp. z o.o., Poland
 
3
Institute of Physics, Division of Geochronology and Environmental Isotopes, Silesian University of Technology, Poland
 
4
Institute of Geography, Heidelberg University, Germany
 
5
Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Poland
 
 
Submission date: 2025-03-28
 
 
Acceptance date: 2025-08-01
 
 
Online publication date: 2025-08-06
 
 
Publication date: 2025-08-06
 
 
Corresponding author
Renata Majgier   

Institute of Physics, Faculty of Science and Technology, Jan Dlugosz University, Armii Krajowej 13/15, 42-200, Czestochowa, Poland
 
 
Geochronometria 2025;52(1)
 
KEYWORDS
TOPICS
ABSTRACT
Optical Stimulated Luminescence (OSL) screening has emerged as a significant advancement in the field of luminescence dating applications. The employed portable luminescence readers offer practical and efficient tools for on-site measurements. In contrast to traditional luminescence dating in the laboratory, which often involves analyzing enriched quartz or feldspar mineral separates, portable OSL readers typically measure infrared (IR) or blue post-IR OSL signals from unprocessed bulk material. Here, we present a new device series that can be used as a portable OSL reader for dating purposes and luminescence screening: the OSL Helios reader. The reader has already been used in luminescence laboratories as a bench-top device for dosimetry research for almost twenty years. It recently received significant upgrades for better versatility. Our contribution demonstrates the application of the OSL Helios reader for luminescence screening on a loess profile, where luminescence signal intensities were assessed for specific sedimentological layers. The profile was measured using different versions of the OSL Helios reader, and the results were compared to those of the SUERC reader, which is commonly used as a portable reader in applications. Additionally, standard passive dosimeters (Al2O3:C and BeO), as well as detectors considered for emergency dosimetry (NaCl), were measured to determine the sensitivity of Helios devices. We conclude that the Helios reader performs similarly to the SUERC reader in most standard situations and can be considered an additional option for portable luminescence reader application.
ACKNOWLEDGEMENTS
The authors would like to express their sincere gratitude to Professor David Sanderson for his valuable consultations regarding properly setting measurement parameters of the SUERC reader.
FUNDING
MB was financed by project #101107989 - Lyoluminescence - HORIZON-MSCA-2022-PF-01. SK was financed through the DFG Heisenberg programme (#505822867). The research was partially carried out with the support of the Polish National Science Centre, contract number 2021/41/N/ST10/00169. This work was partly supported (RM and AM) by research project no. 2018/31/B/ST10/03966 from the Polish National Science Centre.
REFERENCES (66)
1.
Alghamdi HMS, Sanderson DCW, Cresswell AJ and Fitzgerald S, 2024. Radiological or nuclear emergency OSL dosimetry using commonplace salt. Radiation Measurements 174: 107141, DOI 10.1016/j.radmeas.2024.107141.
 
2.
Alghamdi H, Sanderson D, Carmichael L, Cresswell A and Martin L, 2022. The use of portable OSL and IRSL measurements of NaCl in low dose assessments following a radiological or nuclear emergency. Front. Public Health 10: 969829, DOI 10.3389/fpubh.2022.969829.
 
3.
Baril MR and Huntley DJ, 2003. Optical excitation spectra of trapped electrons in irradiated feldspars. Journal of Physics: Condensed Matter 15: 8011–8027, DOI 10.1088/0953-8984/15/46/017.
 
4.
Ben-Melech N, Zeevi-Berger O, Porat N, Roskin J, Langgut D, Walker B and Gadot Y, 2024. Agricultural Terracing and Land Tenure in Late Medieval Southern Levant: The Case of Nahal Ein Karim, Jerusalem. Environmental Archaeology: 1–15, DOI 10.1080/14614103.2024.2371052.
 
5.
Bernhardsson C, Christiansson M, Mattsson S and Rääf CL, 2009. Household salt as a retrospective dosemeter using optically stimulated luminescence. Radiation and environmental biophysics 48: 21–28, DOI 10.1007/s00411-008-0191-y.
 
6.
Bøtter-Jensen L, Duller GAT, Murray AS and Banerjee D, 1999. Blue light emitting diodes for optical stimulation of quartz in retrospective dosimetry and dating. Radiation Protection Dosimetry 84(1–4): 335–340, DOI 10.1093/oxfordjournals.rpd.a032750.
 
7.
Brill D, Jankaew K and Brückner H, 2016. Towards increasing the spatial resolution of luminescence chronologies - Portable luminescence reader measurements and standardized growth curves applied to a beach-ridge plain (Phra Thong, Thailand). Quaternary Geochronology 36: 134–147, DOI 10.1016/j.quageo.2016.09.003.
 
8.
Bulur E, Èoksu HYG and Wahl W, 1998. Infrared (IR) stimulated luminescence from αlpha-Al2O3:C. Radiaion Measurements 29: 625–638, DOI 10.1016/S1350-4487(98)00076-6.
 
9.
Buylaert JP, Thiel C, Murray AS, Vandenberghe DA, Yi S and Lu H, 2011. IRSL and post-IR IRSL residual doses recorded in modern dust samples from the Chinese Loess Plateau. Geochronometria 38: 432–440, DOI 10.2478/s13386-011-0047-0.
 
10.
Carter J, Cresswell AJ, Kinnaird TC, Carmichael LA, Murphy S and Sanderson DCW, 2018. Non-Poisson variations in photomultipliers and implications for luminescence dating. Radiation Measurements 120: 267–273, DOI 10.1016/j.radmeas.2018.05.010.
 
11.
Chruścińska A and Przegiętka K, 2005. Quartz TL decay due to optical bleaching. Geochronometria 24: 1–6.
 
12.
Denis G, Rodriguez MG, Akselrod MS, Underwood TH and Yukihara EG, 2011. Time-resolved measurements of optically stimulated luminescence of Al2O3: C and Al2O3: C, Mg. Radiation measurements 46(12): 1457–1461, DOI 10.1016/j.radmeas.2011.06.054.
 
13.
Euzen C, Chabaux F, Rixhon G, Preusser F, Eyrolle F, Chardon V, Zender AM, Badariotti D and Schmitt L, 2024. Multi-method geochronological approach to reconstruct post-1800 floodplain sedimentation in the Upper Rhine Plain, France. Quaternary Geochronology 83: 101561, DOI 10.1016/j.quageo.2024.101561.
 
14.
Gray HJ, Mahan SA, Springer KB and Pigati JS, 2018. Examining the relationship between portable luminescence reader measurements and depositional ages of paleowetland sediments, Las Vegas Valley, Nevada. Quaternary Geochronology 48: 80–90, DOI 10.1016/j.quageo.2018.07.006.
 
15.
Gray HJ, Jain M, Sawakuchi AO, Mahan SA and Tucker GE, 2019. Luminescence as a Sediment Tracer and Provenance Tool. Reviews of Geophysics 57: 987–1017, DOI 10.1029/2019RG000646.
 
16.
Gray H, DuRoss C, Nicovich S and Gold R, 2022. Luminescence sediment tracing reveals the complex dynamics of colluvial wedge formation. Science Advances 8: eabo0747, DOI 10.1126/sciadv.abo0747.
 
17.
Guérin G, Combès B, Lahaye C, Thomsen KJ, Tribolo C, Urbanova P, Guibert P, Mercier N and Valladas H, 2015. Testing the accuracy of a Bayesian central-dose model for single-grain OSL, using known-age samples. Radiation Measurements 81: 62–70. DOI 10.1016/j.radmeas.2015.04.002.
 
18.
Hunter PG, Spooner NA, Smith BW and Creighton DF, 2012. Investigation of emission spectra, dose response and stability of luminescence from NaCl. Radiation measurements 47(9): 820–824, DOI 10.1016/j.radmeas.2012.01.005.
 
19.
Huntley DJ, Godfrey-Smith DI and Thewalt MLW, 1985. Optical dating of sediments. Nature 313: 105–107, DOI 10.1038/313105a0.
 
20.
Huntley DJ, Godfrey-Smith DI and Haskell EH, 1991. Light-induced emission spectra from some quartz and feldspars. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 18: 127–131, DOI 10.1016/1359-0189(91)90104-P.
 
21.
Ikeya M and Furusawa M, 1989. A portable spectrometer for ESR microscopy, dosimetry and dating. International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes 40(10–12): 845–850, DOI 10.1016/0883-2889(89)90005-1.
 
22.
Ikeya M, Katakuse I and Ichihara T, 1990. Portable thermoluminescence reader for dosimetry and dating in fields. Journal of Nuclear Science and Technology 27(2): 188–190, DOI 10.3327/jnst.27.188.
 
23.
Karampiperi M, Rääf CL and Bernhardsson C, 2024. Evaluation of a portable OSL/IRSL reader for radiation dose assessment of NaCl pellets–in situ individualised screening during R/N emergencies. Radiation Measurements 179: 107323, DOI 10.1016/j.radmeas.2024.107323.
 
24.
Kim H, Park CY, Kim SI, Kim MC and Lee J, 2024. Development of a prototype TL/OSL reader for on-site use in a large-scale radiological accident. Nuclear Engineering and Technology 56(6): 2113–2119, DOI 10.1016/j.net.2024.01.019.
 
25.
Kinnaird TC, Sanderson DC and Bigelow GF, 2015. Feldspar SARA IRSL dating of very low dose rate aeolian sediments from Sandwick South, Unst, Shetland. Quaternary Geochronology 30: 168–174. DOI 10.1016/j.quageo.2015.02.019.
 
26.
Kook MH, Murray AS, Lapp T, Denby PH, Ankjærgaard C, Thomsen K, Jain M, Choi Kim JH and Kim GH, 2011. A portable luminescence dating instrument. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 269(12): 1370–1378, DOI 10.1016/j.nimb.2011.03.014.
 
27.
Kreutzer S, Martin L, Guérin G, Tribolo C, Selva P and Mercier N, 2018. Environmental dose rate determination using a passive dosimeter: techniques and workflow for α-Al2O3: C chips. Geochronometria 45(1): 56–67, DOI 10.1515/geochr-2015-0086.
 
28.
Kreutzer S and Burow C, 2022. xlum: read, write, and convert XLUM Data (v0.1.0). Zenodo, DOI 10.5281/zenodo.7362364.
 
29.
Kreutzer S, Grehl S, Höhne M, Simmank O, Dornich K, Adamiec G, Burow C, Roberts HM and Duller GA, 2023. XLUM: an open data format for exchange and long-term preservation of luminescence data. Geochronology 5(1): 271–284, DOI 10.5194/gchron-5-271-2023.
 
30.
Kreutzer S, Burow C, Dietze M, Fuchs MC, Schmidt C, Fischer M, Friedrich J, Mercier N, Philippe A, Riedesel S, Autzen M, Mittelstrass D, Gray HJ, Galharret JM and Colombo M, 2024. Luminescence: Comprehensive luminescence dating data analysis. version: 0.9.26, URL https://CRAN.R-project.org/pac...; DOI 10.32614/CRAN.package.Luminescence.
 
31.
Lomax J, Mittelstraß D, Kreutzer S and Fuchs M, 2015. OSL, TL and IRSL emission spectra of sedimentary quartz and feldspar samples. Radiation Measurements 81: 251–256, DOI 10.1016/j.radmeas.2009.04.001.
 
32.
Mandowski A, Mandowska E, Kokot L, Bilski P, Olko P and Marczewska B, 2010. Portable system for identifying radiation hazards using OSL microdetectors (in Polish). Elektronika: konstrukcje, technologie, zastosowania 51(2): 136–138.
 
33.
Marczewska B, Bilski P, Wróbel D and Kłosowski M, 2016. Investigations of OSL properties of LiMgPO4: Tb, B based dosimeters. Radiation Measurements 90: 265–268, DOI 10.1016/j.radmeas.2016.02.004.
 
34.
Marczewska B, Sas-Bieniarz A, Bilski P, Gieszczyk W, Kłosowski M and Sądel M, 2019. OSL and RL of LiMgPO4 crystals doped with rare earth elements. Radiation Measurements 129: 106205, DOI 10.1016/j.radmeas.2019.106205.
 
35.
Moska P, Bluszcz A, Poręba G, Tudyka K, Adamiec G, Szymak A and Przybyła A, 2021. Luminescence dating procedures at the Gliwice Luminescence Dating Laboratory Geochronometria 48: 1–15, DOI 10.2478/geochr-2021-0001.
 
36.
Mrozik A, Kulig D, Marczewska B and Bilski P, 2017. Dose estimation based on OSL signal from banknotes in accident dosimetry. Radiation Measurements 101: 1–6, DOI 10.1016/j.radmeas.2017.04.012.
 
37.
Mrozik A and Bilski P, 2021. Popular medicines as radiation sensors. IEEE Sensors Journal 21(15): 16637–16643, DOI 10.1109/JSEN.2021.3082285.
 
38.
Munyikwa K, Kinnaird TC and Sanderson DC, 2021. The potential of portable luminescence readers in geomorphological investigations: a review. Earth Surface Processes and Landforms 46(1): 131–150, DOI 10.1002/esp.4975.
 
39.
Murray AS and Wintle AG, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32: 57–73, DOI 10.1016/s1350-4487(99)00253-x.
 
40.
Muñoz‐Salinas E, Bishop P, Sanderson DC and Zamorano J, 2011. Interpreting luminescence data from a portable OSL reader: three case studies in fluvial settings. Earth Surface Processes and Landforms 36: 651–660, DOI 10.1002/esp.2084.
 
41.
Nitundil S, Stone A and Srivastava A, 2023. Applicability of using portable luminescence reader for rapid age-assessments of dune accumulation in the Thar desert, India. Quaternary Geochronology 78: 101468, DOI 10.1016/j.quageo.2023.101468.
 
42.
Perks CA, Yahnke C and Million M, 2008. Medical dosimetry using Optically Stimulated Luminescence dots and microStar readers. In Proceedings of 12th International congress of the International Radiation Protection Association, Buenos Aires, Argentina. https://inis.iaea.org/records/....
 
43.
Poolton NRJ, Bøtter-Jensen L, Wintle AG, Jakobsen J, Jørgensen F and Knudsen KL, 1994. A portable system for the measurement of sediment OSL in the field. Radiation Measurements 23(2–3): 529–532. DOI 10.1016/1350-4487(94)90093-0.
 
44.
Porat N, López GI, Lensky N, Elinson R, Avni Y, Elgart-Sharon Y, Faershtein G and Gadot Y, 2019. Using portable OSL reader to obtain a time scale for soil accumulation and erosion in archaeological terraces, the Judean Highlands, Israel. Quaternary Geochronology 49: 65–70, DOI 10.1016/j.quageo.2018.04.001.
 
45.
Rawat NS, Dhabekar B, Kulkarni MS, Muthe KP, Mishra DR, Soni A, Gupta SK and Babu DAR, 2014. Optimization of CW-OSL parameters for improved dose detection threshold in Al2O3:C. Radiation Measurements 71: 212–216, DOI 10.1016/j.radmeas.2014.02.013.
 
46.
R Core Team, 2025. R: A language and environment for statistical computing. version: v4.3.2, URL https://r-project.org/, (accessed 2025-02-10).
 
47.
Richter D, Richter A and Dornich K, 2015. Lexsyg smart—a luminescence detection system for dosimetry, material research and dating application. Geochronometria 42(1): 202–209, DOI 10.1515/geochr-2015-0022.
 
48.
Richter D, Słonecka I, Schischke S and Dornich K, 2018. myOSL–A new series of portable and stationary equipment for OSL-dosimetry based ON BeO. In RAD Conference Proceedings Vol. 3, pp. 132–137, DOI 10.21175/RadProc.2018.29.
 
49.
Rizza M, Rixhon G, Valla PG, Gairoard S, Delanghe D, Fleury J, Tal M and Groleau S, 2024. Revisiting a proof of concept in quartz-OSL bleaching processes using sands from a modern-day river (the Séveraisse, French Alps). Quaternary Geochronology 82: 101520, DOI 10.1016/j.quageo.2024.101520.
 
50.
Rodriguez-Lazcano Y, Correcher V and Garcia-Guinea J, 2012. Luminescence emission of natural NaCl. Radiation Physics and Chemistry 81(2): 126–130. DOI 10.1016/j.radphyschem.2011.07.012.
 
51.
Sanderson DC and Murphy S, 2010. Using simple portable OSL measurements and laboratory characterisation to help understand complex and heterogeneous sediment sequences for luminescence dating. Quaternary Geochronology 5(2–3): 299–305, DOI 10.1016/j.quageo.2009.02.001.
 
52.
Singarayer JS and Bailey RM, 2003. Further investigations of the quartz optically stimulated luminescence components using linear modulation. Radiation Measurements 37: 451–458, DOI 10.1016/S1350-4487(03)00062-3.
 
53.
Spooner NA, Smith BW., Williams OM, Creighton DF, McCulloch I, Hunter PG, Questiaux DG and Prescott JR, 2011. Analysis of luminescence from common salt (NaCl) for application to retrospective dosimetry. Radiation Measurements 46(12): 1856–1861, DOI 10.1016/j.radmeas.2011.06.069.
 
54.
Srivastava A, Kinnaird T, Sevara C, Holcomb JA and Turner S, 2023. Dating Agricultural Terraces in the Mediterranean Using Luminescence: Recent Progress and Challenges. Land 12: 716, DOI 10.3390/land12030716.
 
55.
Stone A, Bateman MD, Burrough SL, Garzanti E, Limonta M, Radeff G and Telfer MW, 2019. Using a portable luminescence reader for rapid age assessment of aeolian sediments for reconstructing dunefield landscape evolution in southern Africa. Quaternary Geochronology 49: 57–64, DOI 10.1016/j.quageo.2018.03.002.
 
56.
Stone A, Bateman MD, Sanderson D, Burrough SL, Cutts R and Cresswell A, 2024. Probing sediment burial age, provenance and geomorphic processes in dryland dunes and lake shorelines using portable luminescence data. Quaternary Geochronology 82: 101542, DOI 10.1016/j.quageo.2024.101542.
 
57.
Thomsen KJ, Murray AS and Bøtter-Jensen L, 2005. Sources of variability in OSL dose measurements using single grains of quartz. Radiation measurements 39(1): 47–61, DOI 10.1016/j.radmeas.2004.01.039.
 
58.
Thomsen KJ, Jain M, Murray AS, Denby PM, Roy N and Bøtter-Jensen L, 2008. Minimizing feldspar OSL contamination in quartz UV-OSL using pulsed blue stimulation. Radiation Measurements 43(2–6): 752–757, DOI 10.1016/j.radmeas.2008.01.020.
 
59.
Turner S, Kinnaird T, Varinlioğlu G, Şerifoğlu TE, Koparal E, Demirciler V, Athanasoulis D, Ødegård K, Crow J, Jackson M, Bolòs J, Sánchez-Pardo JC, Carrer F, Sanderson D and Turner A, 2021. Agricultural terraces in the Mediterranean: medieval intensification revealed by OSL profiling and dating. Antiquity 95: 773–790, DOI 10.15184/aqy.2020.187.
 
60.
Umisedo NK, Yoshimura EM, Gasparian PB, Yukihara EG, 2010. Comparison between blue and green stimulated luminescence of Al2O3:C. Radiation Measurements 45(2): 151–156. DOI 10.1016/j.radmeas.2010.02.001.
 
61.
Winnicki J, 1997. Geological structure of the Trzebnica Hills in the light of new investigation. Geological Quarterly 41(3): 365–380.
 
62.
Yukihara EG and McKeever SWS, 2006. Spectroscopy and optically stimulated luminescence of Al2O3: C using time-resolved measurements. Journal of Applied Physics 100(8): 083512, DOI 10.1063/1.2357344.
 
63.
Yukihara EG, 2011. Luminescence properties of BeO optically stimulated luminescence (OSL) detectors. Radiation Measurements 46(6–7): 580–587, DOI 10.1016/j.radmeas.2011.04.013.
 
64.
Yukihara EG, Andrade AB and Eller S, 2016. BeO optically stimulated luminescence dosimetry using automated research readers. Radiation Measurements 94: 27–34, DOI 10.1016/j.radmeas.2016.08.008.
 
65.
Yukihara EG, McKeever SWS, Andersen CE, Bos AJJ, Bailiff IK, Yoshimura EM, Sawakuchi GO, Bossin L and Christensen JB, 2022. Luminescence dosimetry. Nature Reviews Methods Primers 2: 26, DOI 10.1038/s43586-022-00102-0.
 
66.
Zero-Rad, Poland, 2025. Last access: 2025-01-23, URL https://zero-rad.com/.
 
eISSN:1897-1695
ISSN:1733-8387
Journals System - logo
Scroll to top