Comparing Varve Counting And 14C-Ams Chronologies In The Sediments Of Lake Żabińskie, Northeastern Poland: Implications For Accurate 14C Dating Of Lake Sediments
More details
Hide details
Faculty of Oceanography and Geography, University of Gdańsk, Bażyńskiego 4, PL80952 Gdańsk, Poland
Faculty of Physics, Adam Mickiewicz University, Umultowska 85, PL61614 Poznań, Poland
Poznań Radiocarbon Laboratory, Foundation of the Adam Mickiewicz University, Rubież 46, PL61612 Poznań, Poland
W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL31512 Kraków, Poland
Oeschger Centre for Climate Change Research and Institute of Geography, University of Bern, Erlachstrasse 9a, CH3012 Bern, Switzerland
Submission date: 2015-05-28
Acceptance date: 2015-09-07
Online publication date: 2015-11-10
Geochronometria 2015;42(1):159-171
Varved lake sediments from Lake Zabihskie (northeastern Poland) provide a high- resolution calendar-year chronology which allows validation of 14C dating results. Microscopic analy­sis of the varve microfacies revealed that laminations found in Lake Zabihskie were biogenic (calcite) varves. Three independent counts indicated a good preservation quality of laminae in the 348 cm long sediment profile which contained 1000+12/-24 varves. The varve chronology was validated with the 137Cs activity peaks, the tephra horizon from the Askja eruption at AD 1875 and with the timing of major land-use changes of known age inferred from pollen analysis. 32 AMS 14C dates of terrestrial macrofossils distributed along the profile were compared with the varve chronology. After identifica­tion of outliers, the free-shape model performed with 21 14C dates provided the best possible fit with the varve chronology. We observed almost ideal consistency between both chronologies from the present until AD 1250 while in the lower part (AD 1000-1250) the difference increases to ca. 25 years. We demonstrate that this offset can be explained by too old radiocarbon ages of plant remains trans­ported to the lake by the inflowing creek. Results of this study highlight that careful interpretation of radiocarbon age-depth models is necessary, especially in lakes where no annual laminations are ob­served and no independent method are used for cross-validation.
Allen JRM, Brandt U, Brauer A, Hubberten HW, Huntley B, Keller J, Kraml M, Mackensen A, Mingram J, Negendank JFW, Nowaczyk NR, Oberhänsli H, Watts WA, Wulf S and Zolitschka B, 1999. Rapid environmental changes in southern Europe during the last glacial period. Nature 400: 740-743, DOI 10.1038/23432.
Amann B, Lobsinger S, Fischer D, Tylmann W, Filipiak J and Grosjean M, 2014. Spring temperature variability and eutrophication history inferred sedimentary pigments in the varved sediments of Lake Żabińskie, north-eastern Poland, 1907-2008 AD. Global and Planetary Change 123: 86-96, DOI 10.1016/j.gloplacha.2014.10.008.
Barnekow L, 2000. Holocene regional and local vegetation history and lake-level changes in the Torneträsk area, northern Sweden. Jour-nal of Paleolimnology 23(4): 399-420, DOI 10.1023/A:1008171418429.
Berglund BE and Ralska-Jasiewiczowa M, 1986. Pollen analysis and pollen diagrams: 455-484. In: Berglund BE, ed., Handbook of Holocene Palaeoecology and Palaeohydrology. J. Wiley & Sons Ltd., Chichester, New York.
Beug HJ, 2004. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete (Pollen Determination Guide for Central Europe and Adjacent Areas). Verlag Dr. Friedrich Pfeil, München (in German).
Białuński G, 1996. Osadnictwo regionu Wielkich Jezior Mazurskich od XIV do początków XVIII wieku. Starostwa leckie (giżyckie) i ryńs-kie (The settlement of the Great Masurian Lakes from the four-teenth to the early eighteenth century. The county Leckie (Giżycko) and Ryńskie). Olsztyn: 249 pp (in Polish).
Blaauw M, 2010. Methods and code for 'classical' age-modelling of radiocarbon sequences. Quaternary Geochronology 5: 512-518, DOI 10.1016/j.quageo.2010.01.002.
Blaauw M and Christen JA, 2011. Flexible Paleoclimate Age-Depth Models Using an Autoregressive Gamma Process. Bayesian Anal-ysis 6/3, 457-474, DOI 10.1214/11-BA618.
Bonk A, Tylmann W, Amann B, Enters D and Grosjean M, 2015. Modern limnology, sediment accumulation and varve formation processes in Lake Żabińskie, northeastern Poland: comprehensive process studies as a key to understand the sediment record, Journal of Limnology 74(2): 358-370, DOI: 10.4081/jlimnol.2014.1117.
Brauer A and Casanova J, 2001. Chronology and depositional processes of the laminated sediment record from Lac d’Annecy, French Alps. Journal of Paleolimnology 25(2): 163-177, DOI 10.1023/A:1008136029735.
Brauer A, Endres C and Negendank JFW, 1999. Lateglacial calendar year chronology based on annually laminated sediments from Lake Meerfelder Maar, Germany. Quaternary International 61(1): 17-25, DOI 10.1016/S1040-6182(99)00014-2.
Brauer A, Endres C, Zolitschka B and Negendank JFW, 2000. AMS radiocarbon and varve chronology from the annually laminated sediment record from Lake Meerfelder Maar, Germany. Radiocar-bon 42(3): 355-368.
Brauer A, Litt T, Negendank JFW and Zolitschka B, 2001. Lateglacial varve chronology and biostratigraphy of lakes Holzmaar and Meerfelder Maar, Germany. Boreas 30: 83-88, DOI 10.1111/j.1502-3885.2001.tb00991.x.
Brauer A, Hajdas I, Blockley SPE, Bronk Ramsey C, Christl M,Ivy-Ochs S, Moseley GS, Nowaczyk NN, Rasmussen SO, Roberts HM, Spötl C, Staff RA and Svensson A, 2014. The importance of independent chronology in integrating records of past climate change for the 60-8 ka INTIMATE time interval. Quaternary Science Reviews 106: 47-66, DOI 10.1016/j.quascirev.2014.07.006.
Bronk Ramsey C, 2009. Bayesian analysis of radiocarbon dates. Radio-carbon 51(1): 337-360.
Enters D, Kirchner G and Zolitschka B, 2006. Establishing a chronolo-gy for lacustrine sediments using a multiple dating approach - a case study from the Frickenhauser See, central Germany. Quater-nary Geochronology 1(4): 249-260. DOI 10.1016/j.quageo.2007.01.005.
Faegri K and Iversen J, 1989. Textbook of Pollen Analysis. 4th edition. John Wiley & Sons, Chichester.
Geyh MA, Grosjean M, Núñez L and Schottererd U, 1999. Radiocarbon Reservoir Effect and the Timing of the Late-Glacial/Early Holo-cene Humid Phase in the Atacama Desert (Northern Chile). Qua-ternary Research 52(2): 143-153, DOI 10.1006/qres.1999.2060.
Goslar T, Czernik J and Goslar E, 2004. Low-energy 14C AMS in Poznan Radiocarbon Laboratory, Poland. Nuclear Instruments and Methods in Physics Research B: 223-224: 5-11, DOI 10.1016/j.nimb.2004.04.005.
Goslar T, Van der Knaap WO, Kamenik C and Van Leeuwen JF, 2009. Free-shape 14C age-depth modeling of an intensively dated modern peat profile, Journal of Quaternary Science 24(5): 481-499, DOI 10.1002/jqs.1283.
Hajdas I, Bonani G, Zolitschka B, Brauer A and Negendank JFW, 1998. 14C ages of terrestrial macrofossils from Lago Grande di Mon-ticchio (Italy). Radiocarbon 40(2): 803-807.
Hegerl G, Luterbacher J, Gonzalez-Rouco F, Tett SFB, Crowley T and Xoplaki E, 2011. Influence of human and natural forcing on European seasonal temperatures. Nature Geoscience 4: 99-103, DOI 10.1038/ngeo1057.
Hernández-Almeida I, Grosjean M, Tylmann W and Bonk A, 2015. Chrysophyte cyst-inferred variability of warm season lake water chemistry and climate in northern Poland: training set and downcore reconstruction. Journal of Paleolimnology 53: 123-138, DOI 10.1007/s10933-014-9812-4.
Hua Q, Barbetti M and Rakowski AJ, 2013. Atmospheric Radiocarbon for the Period 1950-2010. Radiocarbon 55(4): 2059-2072, DOI 10.2458/azu_js_rc.v55i2.16177.
Kinder M, Tylmann W, Enters D, Piotrowska N, Poręba G and Zolitschka B, 2013. Construction and validation of calendar-year time scale for annually laminated sediments - an example from Lake Szurpiły (NE Poland). GFF 13(3-4): 248-257.
Kitagawa H and van der Plicht J, 1998. A 40,000-year varve chronology from Lake Suigetsu, Japan: extension of the 14C calibration curve. Radiocarbon 40(1): 505-515.
Lamoureux SF, 2001. Varve chronology techniques. In: Last WM, Smol JP, eds., Developments in Paleoenvironmental Research (DPER) Volume 1: Basin analysis, Coring, and chronological techniques. Kluwer, Dordrecht: 247-260pp.
Larocque-Tobler I, Filipiak J, Tylmann W, Bonk A and Grosjean M, 2015. Comparison between chironomid-inferred mean-August temperature from varved Lake Żabińskie (Poland) and instrumen-tal data sine 1896 AD. Quaternary Science Reviews 111: 35-50, DOI 10.1016/j.quascirev.2015.01.001.
Larsen CPS, Pienitz R, Smol JP, Moser KA, Cumming BF, Blais JM, Macdonald GM and Hall RI, 1998. Relations between lake mor-phometry and the presence of laminated lake sediments: a re-examination of Larsen and Macdonald (1993). Quaternary Science Reviews 17(8): 711-717, DOI 10.1016/S0277-3791(97)00043-7.
Lotter AF and Lemcke G, 1999. Methods for preparing and counting biochemical varves. Boreas 28: 243-252, DOI 10.1111/j.1502-3885.1999.tb00218.x.
Lowe JJ, 2001. Abrupt climatic changes in Europe during the last glacial-interglacial transition: the potential for testing hypotheses on the synchronicity of climatic events using tephrochronology. Global and Planetary Change 30: 73-84 DOI 10.1016/j.quaint.2010.11.028.
Lücke A, Schleser GH, Zolitschka B and Negendank JFW, 2003. A Lateglacial and Holocene organic carbon isotope record of lacus-trine palaeoproductivity and climatic change derived from varved lake sediments of Lake Holzmaar, Germany. Quaternary Science Reviews 22(5-7): 569-580, DOI 10.1016/S0277-3791(02)00187-7.
Mellström A, Muscheler R, Snowball I, Ning W and Haltia-Hovi E, 2013. Radiocarbon wiggle-match dating of bulk sediments - how accurate can it be? Radiocarbon 55: 1173-1186, DOI 10.2458/azu_js_rc.55.16355.
Ojala AEK, 2001. Varved Lake Sediments in Southern and Central Finland: Long Varve Chronologies as a Basis for Holocene Pal-aeoenvironmental Reconstructions. PhD thesis, Geological Survey of Finland, Miscellaneous Publications 41.
Ojala AEK, Saarinen T and Salonen VP, 2000. Preconditions for the formation of annually laminated lake sediments in southern and central Finland. Boreal Environment Research 5: 243-255.
Ojala AEK and Tiljander M, 2003. Testing the fidelity of sediment chronology: comparison of varve and paleomagnetic results from Holocene lake sediments from central Finland. Quaternary Sci-ence Reviews 22(15-17): 1787-1803, DOI 10.1016/S0277-3791(03)00140-9.
O’Sullivan PE, 1983. Annually-laminated lake sediments and the study of Quaternary environmental changes - a review. Quaternary Sci-ence Reviews 1: 245-313, DOI 10.1016/0277-3791(83)90008-2.
Pędziszewska A, Tylmann W, Witak M, Piotrowska N, Maciejewska E and Latałowa M, 2015. Holocene environmental changes reflected by pollen, diatoms, and geochemistry of annual laminated sedi-ments of Lake Suminko in the Kashubian Lake District (N Po-land), Review of Palaeobotany and Palynology 216: 55-75, DOI 10.1016/j.revpalbo.2015.01.008.
Ralska-Jasiewiczowa M, Goslar T, Madeyska T, Starkel L, eds., 1998. Lake Gościąż, central Poland. A Monographic Study Part 1. Szaf-er Institute of Botany, Polish Academy of Sciences, Kraków.
Ralska-Jasiewiczowa M, Goslar T, Różański K, Wacnik A, Czernik J and Chróst L, 2003. Very fast environmental changes at the Pleis-tocene/Holocene boundary, recorded in laminated sediments of Lake Gościąż, Poland. Palaeogeography, Palaeoclimatology, Pal-aeoecology 193(2): 225-247, DOI 10.1016/S0031-0182(03)00227-X.
Rasmussen SO., Andersen KK, Svenson AM, Steffensen JP, Vinther BM, Clausen HB, Siggaard-Andersen M-L, Johnsen SJ, Larsen LB, Dahl-Jenses D, Bigler M, Röthlisberger R, Fischer H, Goto-Azuma K, Hansson ME and Ruth U, 2006. A new Greenland ice core chronology for the last glacial termination, Journal of Geo-physical Research 111: D06102, DOI 10.1029/2005JD006079.
Reille M, 1995. Pollen et Spores d’Europe et d’Afrique du Nord (Pollen and spores from Europe and North Africa). Supplement 1. Lab. Bot. Hist. Palynol., Marseille (in French).
Reille M, 1998. Pollen et Spores d’Europe et d’Afrique du Nord ((Pollen and spores from Europe and North Africa). Supplement 2. Lab. Bot. Hist. Palynol., Marseille (in French).
Reimer PJ, Bard E, Bayliss A, Beck WJ, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hafidason Hafifi, Hajdas I, Hattè C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney SM and Van der Plicht J, 2013. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0 - 50,000 Years cal BP, Radiocarbon 55(4): 1869-1887, DOI 10.2458/azu_js_rc.55.16947.
Seppä H, 2007. Pollen analysis, Principles. In: Elias SA, ed., Encyclo-pedia of Quaternary Science. Elsevier, Amsterdam, 2486-2497pp.
Snowball I, Zillén L and Gaillard MJ, 2002. Rapid early-Holocene environmental changes in northern Sweden based on studies of two varved lake-sediment sequences. The Holocene 12 (1): 7-16, DOI 10.1191/0959683602hl515rp.
Stanton T, Snowball I, Zillén L and Wastegård S, 2010. Validating a Swedish varve chronology using radiocarbon, palaeomagnetic sec-ular variation, lead pollution history and statistical correlation. Quaternary Geochronology 5(6): 611-624, DOI 10.1016/j.quageo.2010.03.004.
Stockmarr J, 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13: 615-621.
Stuiver M and Polach HA, 1977. Discussion: reporting of 14C data. Radiocarbon 19(3): 355-363.
Szumański A, 2000. Objaśnienia do Szczegółowej Mapy Geologicznej Polski, Arkusz Giżycko (104) (Explanation to the Detailed Geolog-ical Map of Poland, Sheet Giżycko (104)). Państwowy Instytut Geologiczny, Warszawa, Polska (in Polish).
Tylmann W, Bonk A, Goslar T, Grosjean M and Wulf S, submitted. Calibrating 210Pb dating results with varve chronology and inde-pendent chronostratigraphic markers: problems and implications. Quaternary Geochronology.
Tylmann W, Enters D, Kinder M, Moska P, Ohlendorf C, Poręba G and Zolitschka B, 2013. Multiple dating of varved sediments from Lake Łazduny, northern Poland: Toward an improved chronology for the last 150 years. Quaternary Geochronology 15: 98-107, DOI 10.1016/j.quageo.2012.10.001.
Vinther BM, Clausen HB, Johnsen SJ, Rasmussen SO, Andersen KK, Buchardt SL, Dahl-Jensen D, Seierstad IK, Siggaard-Andersen M-L, Steffensen JP, Svensson A, Olsen J and Heinemeier JA, 2006. A synchronized dating of three Greenland ice cores throughout the Holocene, Journal of Geophysical Research 111: D13, DOI 10.1029/2005JD006921.
Wakar A and Wilamowski B, 1968. Węgorzewo z Dziejów Miasta i Powiatu (Węgorzewo: the history of the town and county). Pojezi-erze, Olsztyn (in Polish).
Wulf S, Ott F, Słowiński M. Noryśkiewicz AM, Dräger N, Martin-Puertas C, Czymzik M, Neugebauer I, Dulski P, Bourne AJ, Błaszkiewicz M and Brauer A, 2013. Tracing the Laachersee Tephra in the varved sediment record of the Trzechowskie paleo-lake in central Northern Poland. Quaternary Science Reviews 76: 129-139, DOI 10.1016/j.quascirev.2013.07.010.
Zillén L, Snowball I, Sandgren P and Stanton T, 2003. Occurrence of varved lake sediment sequences in Värmland, west central Swe-den: lake characteristics, varve chronology and AMS radiocarbon dating. Boreas 32(4): 612-616, DOI 10.1111/j.1502-3885.2003.tb01239.x.
Zolitschka B, 1990. Spätquartäre jahreszeitlich geschichtete Seesedi-mente ausgewählter Eifelmaare, Paläolimologische Untersuchungen als Beitrag zur spät- und postglazialen Klima- und Be-siedlungsgeschichte (Late Quaternary varved lake sediments from Eifelmaar, palaeolimnological studies contributing the Late and pos-glacial climate and settlement history), Documenta Naturae 60: 226 (in German).
Zolitschka B, 2007. Varved lake sediments. In: Elias SA, ed., Encyclo-pedia of Quaternary Science. Elsevier, Amsterdam, 3105-3114pp, DOI 10.1016/B0-44-452747-8/00065-X.
Zolitschka B, Francus P, Ojala AEK and Schimmelmann A, 2015. Varves in lake sediments - a review, Quaternary Science Reviews 117: 1-41, DOI 10.1016/j.quascirev.2015.03.019.
Journals System - logo
Scroll to top