Detailed protocol for an accurate non-destructive direct dating of tooth enamel fragment using Electron Spin Resonance
More details
Hide details
Southern Cross GeoScience, Southern Cross University, Lismore, NSW, 2480, Australia
Online publication date: 2013-09-27
Publication date: 2013-12-01
Geochronometria 2013;40(4):322-333
In the context of human evolution, fossil remains are too valuable to be destroyed and any alteration should be kept to a minimum. The newly developed protocol on fossil fragments has open the gate for ‘virtually’ non-destructive ESR (Electron Spin Resonance) direct dating of human remains. The method allows the separation of unstable and interfering signals that were responsible for large dose underestimation. While a complete investigation of the ESR signal remains a complex task and requires numerous hours of manipulations, a rapid dose assessment protocol can be achieve without compromising the accuracy nor the integrity of the sample. The new protocol should be used for future dating regardless of the possibility of measuring powder.
Aragno D, Fattibene P and Onorie S, 2001. Mechanically induced EPR signals in tooth enamel. Applied Radiation and Isotopes 55(3): 375–382, DOI 10.1016/S0969-8043(01)00078-1.
Bouchez R, Cox R, Hervé A, Lopez-Carranza E, Ma JL, Piboule M, Poupeau G and Rey P, 1988. Q-Band ESR studies of fossil teeth: consequences for ESR dating. Quaternary Science Reviews 7(3–4): 497–501, DOI 10.1016/0277-3791(88)90052-2.
Brik AS, Haskell EH, Scherbina OI, Brik VB and Atamanenko ON, 1998. Alignment of CO2 — radicals of tooth enamel with heating. Mineralogy Journal 20: 26–36.
Brik A, Haskell E, Brik V, Scherbina O and Atamanenko ON, 2000a. Anisotropy effects of EPR signals and mechanisms of mass transfer in tooth enamel and bones. Applied Radiation and Isotopes 52(5): 1077–1083, DOI 10.1016/S0969-8043(00)00047-6.
Brik AS, Rosenfeld LG, Haskell EH, Kenner GH and Brik VB, 2000b. Formation mechanism and localization places of CO2-radicals in tooth enamel. Mineralogie Journal 22: 57–67.
Bodin T and Sambridge M, 2009. Seismic tomography with the reversible jump algorithm. Geophysical Journal International 178(3): 1411–1436, DOI 10.1111/j.1365-246X.2009.04226.x.
Callens FJ, Verbeeck RMH, Naessens DE, Matthys PFA and Boesman ER, 1989. Effect of carbonate content on the ESR spectrum near g=2 of carbonated calciumapatites synthetized from aqueous media. Calcified Tissue International 44(2): 114–124, DOI 10.1007/BF02556470.
Callens F, Moens P and Verbeeck R, 1995. An EPR study of intact and powdered human tooth enamel dried at 400°C. Calcified Tissue International 56(6): 543–548, DOI 10.1007/BF00298587.
Callens F, Vanhaelewyn G, Matthys P and Boesman E, 1998. EPR of carbonate derived radicals: applications in dosimetry, dating and detection of irradiated food. Applied Magnetic Resonance 14(2–3): 235–254, DOI 10.1007/BF03161892.
Černy V, 1985. A thermodynamical approach to the travelling salesman problem: an efficient simulation algorithm. Journal of Optimization Theory and Applications. 45(1): 41–51, DOI 10.1007/BF00940812.
Desrosiers MF, Simic MG, Eichmiller FC, Johnston AD and Boen RL, 1989. Mechanically-induced generation of radicals in tooth enamel. Applied Radiation and Isotopes 40(10–12): 1195–1197, DOI 10.1016/0883-2889(89)90062-2.
Driessens P, 1980. The mineral in bones, dentine and enamel. Bulletin Des Sociétés Chimiques Belges 89: 663–687.
Grün R, 1989. Electron spin resonance (ESR) dating. Quaternary International 1: 65–109, DOI 10.1016/1040-6182(89)90010-4.
Grün R, 1995. Semi non-destructive, single aliquot ESR dating. Ancient TL 13: 3–7.
Grün R, 1998. Dose determination on fossil tooth enamel using spectrum deconvolution with Gaussian and Lorentzian peak shapes. Ancient TL 16: 51–55.
Grün R, 2006. A simple method for the rapid assessment of the qualitative ESR response of fossil samples to laboratory irradiation. Radiation Measurements 41(6): 682–689, DOI 10.1016/j.radmeas.2006.04.009.
Grün R and Schwarcz HP, 1987. Some problems on ESR dating of bones. Ancient TL 5(2) 1–9.
Grün R, Maroto J, Eggins S, Stringer C, Robertson S, Taylor L, Mortimer G and McCulloch M, 2006. ESR and Useries analyses of enamel and dentine fragments of the Banyoles mandible. Journal of Human Evolution 50(3): 347–358, DOI 10.1016/j.jhevol.2005.10.001.
Grün R, Joannes-Boyau R and Stringer C, 2008. Two types of CO2-radicals threaten the fundamentals of ESR dating of tooth enamel. Quaternary Geochronology 3(1–2): 150–172, DOI 10.1016/j.quageo.2007.09.004.
Grün R, Mahat R and Joannes-Boyau R, 2012. Ionization efficiencies of alanine dosimeters and tooth enamel irradiated by gamma and X-ray sources. Radiation Measurements 47(9): 665–667, DOI 10.1016/j.radmeas.2012.03.018.
Hillson S, 1986. Teeth, Cambridge Manuals in Archaeology, Cambridge University Press, Cambridge.
Ikeya M and Miki T, 1980. Electron spin resonance dating of animal and human bones. Science 215: 1392–1393, DOI 10.1126/science.215.4538.1392.
Ishchenko SS, Vorona IP, Okulov SM and Baran NP, 2002. 13C hyper-fine interactions of CO2-in irradiated tooth enamel as studied by EPR. Applied Radiation and Isotopes 56(6): 815–819, DOI 10.1016/S0969-8043(02)00049-0.
Joannes-Boyau R and Grün R, 2009. Thermal behavior of oriented and non-oriented CO2-radicals in tooth enamel. Radiation Measurements 44(5–6), 505–511, DOI 10.1016/j.radmeas.2009.02.010.
Joannes-Boyau R, Bodin T and Grün R, 2010a. Decomposition of the angular ESR spectra of fossil tooth enamel fragments. Radiation Measurements 45(8): 887–898, DOI 10.1016/j.radmeas.2010.06.029.
Joannes-Boyau R, Grün R, Bodin T, 2010b. Decomposition of the laboratory irradiation component of angular ESR spectra of fossil tooth enamel fragments. Applied Radiation and Isotopes 68(9): 1798–1808, DOI 10.1016/j.apradiso.2010.03.015.
Joannes-Boyau R and Grün R, 2010. Decomposition of UV induced ESR spectra in enamel fragments of a modern and a fossil tooth. Ancient TL 28: 23–34.
Joannes-Boyau R and Grün R, 2011a. Decomposition of β-induced ESR spectra of fossil tooth enamel. Radiation Physics and Chemistry 80(3): 335–342, DOI 10.1016/j.radphyschem.2010.10.002.
Joannes-Boyau R and Grün R, 2011b. A comprehensive model for CO2-radicals in fossil tooth enamel: implications for ESR dating. Quaternary Geochronology 6(1): 82–97, DOI 10.1016/j.quageo.2010.09.001.
Johnson C, 1998. Biology of Human Dentition. Illinois University, Chicago College of Dentistry.
Kirkpatrick S, Gelatt CD and Vecchi MP, 1983. Optimization by Simulated Annealing. Science 220: 671–680, DOI 10.1126/science.220.4598.671.
Lester KS and Koeningswald WV, 1989. Crystallite orientation discontinuities and the evolution of mammalian enamel or, when is a prism? Scanning Microscopy 3: 645–663.
Macho GA, Jiang Y and Spears IR, 2003. Enamel micro structure — a truly three-dimensional structure. Journal of Human Evolution 45(1): 81–90, DOI 10.1016/S0047-2484(03)00083-6.
Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH and Teller E, 1953. Equations of state calculations by fast computing machines. Journal of Chemical Physics 21(6): 1087–1092, DOI 10.1063/1.1699114.
Mosegaard K and Sambridge M, 2002. Monte Carlo analysis of inverse problems. Inverse Problems 18: R29, DOI 10.1088/0266-5611/18/3/201.
Schramm DU and Rossi AM, 2000. Electron spin resonance (ESR) studies of CO-2 radicals in irradiated A and B-type carbonate-containing apatites. Applied Radiation and Isotopes 52(5): 1085–1091, DOI 10.1016/S0969-8043(00)00046-4.
Scherbina OI and Brik AB, 2000. Temperature stability of carbonate groups in tooth enamel. Applied Radiation and Isotopes 52(5): 1071–1075, DOI 10.1016/S0969-8043(00)00048-8.
Smith TM and Tafforeau P, 2008. New Visions of Dental Tissue Research: Tooth Development, Chemistry, and Structure. Evolutionary Anthropology 17(5): 213–226, DOI 10.1002/evan.20176.
Stoll S and Schweiger A, 2006. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. Journal of Magnetic Resonance 178(1): 42–55, DOI 10.1016/j.jmr.2005.08.013.
Stoll S and Schweiger A, 2007. EasySpin: Simulating cw ESR spectra. Biological Magnetic Resonance 27: 299–321.
Vanhaelewyn G, Callens F, Grün R, 2000a. EPR spectrum deconvolution and dose assessment of fossil tooth enamel using maximum likelihood common factor analysis. Applied Radiation and Isotopes 52(5): 1317–1326, DOI 10.1016/S0969-8043(00)00090-7.
Vanhaelewyn GCAM, Morent RA, Callens FJ, Matthys PFAE, 2000b. X- and Q-band electron paramagnetic resonance of CO2-in hydroxylapatite single crystals. Radiation Research 154 (4): 467–472.
Vorona IP, Ishchenko SS, Baran NP, Petrenko TL and Rudko VV, 2006. Evidence of annealing-induced transformation of CO2-radicals in irradiated tooth enamel. Radiation Measurements 41(5): 577–581, DOI 10.1016/j.radmeas.2005.12.002.
Vorona IP, Baran NP, Ishchenko SS and Rudko VV, 2007. Separation of the contributions from γ- and UV-radiation to the EPR spectra of tooth enamel plates. Applied Radiation and Isotopes 65(5): 553–556, DOI 10.1016/j.apradiso.2006.12.001.
Yokoyama Y, Quaegebeur JP, Bibron R, Leger C, Nguyen HV and Poupeau G, 1981. Electron spin resonance (ESR) dating of fossil bones of the Caune of l’Arago at Tautavel. Lumley H (de) et Labeyrie J eds, pp.437–455.
Journals System - logo
Scroll to top