RESEARCH PAPER
Extreme Radial Growth Reaction of Norway Spruce Along An Altitudinal Gradient in the Šumava Mountains
 
More details
Hide details
1
Administration of Orlické hory PLA, Dobrovského 332, CZ-516 01, Rychnov nad Kněžnou, Czech Republic
 
 
Online publication date: 2009-11-05
 
 
Publication date: 2009-01-01
 
 
Geochronometria 2009;33:41-47
 
KEYWORDS
ABSTRACT
Extreme radial growth reactions were analyzed over a 79-year period (1922-2000) to compare response of Norway spruce (Picea abies [L.] Karst.) along an altitudinal gradient (376-1221 m a.s.l.) in the Šumava Mountains, the Czech Republic. Extreme growth events were defined as pointer years, when an average percentage of the site pointer years reached at least 50% strength observed at the relevant altitudinal zone (low < ca. 700 m; middle ca. 700-950 m, high > ca. 950 m). The comparison of the pointer years showed a specific pattern for altitudinal zones (Low: negative pointer years 2000, 1992, 1984, 1976, 1971 and positive 1997, 1975, 1960, 1949, 1932, 1926; middle: negative 2000, 1992, 1976 and positive 1997, 1989, 1978; high: negative 1996, 1980, 1974, 1965 and positive 1989, 1963, 1927). Negative pointer years were usually induced by summer drought at low elevations and by wet-cold summer at high altitudinal zone. These two main limiting factors were probably combined at the middle altitudinal zone. Detailed understanding of the extreme tree ring pattern along the altitudinal and geographical scale may be used as one of the additional indicators of dendrochronological dating and provenance identification of spruce sample among altitudinal zones in the Šumava Mountains.
 
REFERENCES (47)
1.
Becker M, Bräker OU, Kenk G, Schneider O, Schweingruber FH, 1990. Kronenzustand und Wachstum von Waldbäumen im Dreiländereck Deutschland-Frankreich-Schweiz in den letzten Jahrzehnten (Crown condition and tree growth in the border areas of Germany, France, and Switzerland in the last century). Allgemeine Forst Zeitschrift 62(11): 267-274 (in German).
 
2.
Beneš J, Kolář T and Čejková A, 2006. Xylotomic and dendrochronological analyses in archeology: Changes in the composition type of wood in Prague an in Southern Bohemia. Ve službách arceologie VII: 159-169.
 
3.
Chmelař J, 1986. Dendrologie s ekologií lesních dřevin (Dendrology with ecology of tree species). Brno, Vysoká škola zemědělská: 119pp (in Czech).
 
4.
Cook ER and Kairiukstis LA, 1990. Methods of Dendrochronology, Applications in the Environmental Sciences. Dodrecht, Boston, London, Kluwer Academic Publishers: 394pp.
 
5.
Cropper JP, 1979. Tree-ring skeleton plotting by computer. Tree-Ring Bulletin 39: 47-60.
 
6.
Čejková A and Kolář T, 2005. Dendrochronological Investigations of the Šumava Mountains and the Šumava Foothills, Czech Republic. EuroDendro 2005, International Conference of Dendrochronology, Conference Abstract, Viterbo, Italy: 44-45.
 
7.
Desplanque C, Rolland C and Schweingruber FH, 1999. Influence of species and abiotic factors on extreme tree ring modulation: Picea abies and Abies alba in Tarantaise and Maurienne (French Alps). Trees 13: 218-227.10.1007/s004680050236.
 
8.
Dittmar C and Elling W, 1999. Jahrringbreite von Fichte und Buche in Abhängigkeit von Witterung und Höhenlage (Radial growth of Norway spruce and European beech in relation to weather and altitude). Forstwissenschaftliches Centralblatt 118(4): 251-270 (in German).10.1007/BF02768990.
 
9.
Eckstein D, Krause C and Bauch J, 1989. Dendroecological investigation of spruce trees (Picea abies (L.) Karst.) of different damage and canopy classes. Holzforschung 43(6): 411-417.10.1515/hfsg.1989.43.6.411.
 
10.
Esper J, Cook ER and Schweingruber FH, 2002. Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295: 2250-2253, DOI: 10.1126/science.1066208.10.1126/science.1066208.
 
11.
Fritts HC, 1976. Tree Rings and Climate. New York, Academic Press: 567 pp.
 
12.
Hruška J and Cienciala E, eds., 2003. Long-term acidification and nutrient degradation of forest soils - limiting factors of forestry today. Praha, Ministerstvo životního prostředí: 189pp (in Czech).
 
13.
Kienast F, Schweingruber FH, Bräker OL and Schär E 1987. Tree-ring studies on conifers along ecological radients and the potential of single-year analyses. Canadian Journal of Forest Research 17: 683-696.10.1139/x87-111.
 
14.
Knibbe B, 2003. Past32 Build 700 User Manual. Wien, Sciem: 90pp.
 
15.
Koprowski M, Zielski A 2006. Dendrochronology of Norway spruce (Picea abies (L.) Karst.) from two range centres in lowland Poland. Trees - Structure and Function 20(3): 383-390.10.1007/s00468-006-0051-9.
 
16.
Kroupová M, 2002. Dendroecological study of spruce growth in regions under long-term air pollution load. Journal of Forest Science 48: 536-548.10.17221/11921-JFS.
 
17.
Lingg W, 1986. Dendroökologische Studien an Nadelbäumen im alpinen Trockental Wallis (Schweiz). Berichte der Eidgenössischen Anstalt für das forstliche Versuchswesen 287: 3-81.
 
18.
Mäkinen H, Nöjd P, Kahle H-P, Neumann U, Tveite B, Mielikäinen K, Röhle H and Spiecker H, 2002. Radial growth variation of Norwey spruce (Picea abies (L.) Karst.) across latitudinal and altitudinal gradients in central and northern Europe. Forest Ecology and Management 171: 243-259.10.1016/S0378-1127(01)00786-1.
 
19.
Mäkinen H, Nöjd P, Kahle H-P, Neumann U, Tveite B, Mielikäinen K, Röhle H and Spiecker H, 2003. Large-scale climatic variability and radial increment variation Picea abies (L.) Karst.) in central and northern Europe. Trees 17: 173-184.10.1007/s00468-002-0220-4.
 
20.
Meyer FD, 1999. Pointer year analysis in dendroecology: A comparison of methods. Dendrochronologia 16-17: 193-204.
 
21.
Moravec J, 1964. Vegetační poměry Šumavy (Vegetation conditions of the Šumava Mountains). Ochrana přírody 19: 66-69 (in Czech).
 
22.
Neuwirth B, Esper J, Schweingruber FH, Winiger M, 2004. Site ecological differences to the climatic forcing of spruce pointer years from Lötschental, Switzerland. Dendrochronologia 21(2): 69-78.10.1078/1125-7865-00040.
 
23.
Rolland C, Petitcolas V, Michalet R, 1998. Changes in radial tree growth for Picea abies, Larix decidua, Pinus cembra and Pinus uncinata near the alpine timberline since 1750. Trees 13: 40-53.10.1007/PL00009736.
 
24.
Rolland C, Michalet R, Desplanque C, Petetin A and Aimé S, 1999. Ecological requirements of Abies alba in the French Alps derived from dendro-ecological analysis. Journal of Vegetation Science 10: 297-306.10.2307/3237059.
 
25.
Rolland C, Desplanque C, Michalet R, Schweingruber FH, 2000. Extreme tree rings in spruce (Picea abies [L.] Karst.) and fir (Abies alba Mill.) stands in relation to climate, site, and space in the southern French and Italian Alps. Artic, Antarctic, and Alpine Research 32: 1-13.10.1080/15230430.2000.12003333.
 
26.
Rochefort RM, Little RL, Woodward A, Peterson DL, 1994. Changes in subalpine tree distribution in western North America: Effects of climate and other environmental factors. The Holocene 4: 89-100.10.1177/095968369400400112.
 
27.
Sander C, Eckstein D, Kyncl J and Dobry J, 1995. The growth of spruce (Picea abies (L.) Karst.) in the Krkonose-(Giant) Mountain as indicated by ring width and wood density. Annales des Sciences forestières 52: 401-410.10.1051/forest:19950501.
 
28.
Savva Y, Oleksyn J, Reich PB, Tjoelker MG, Vaganov EA, Modrzynski J 2006. Interannual growth response of Norway spruce to climate along an altitudinal gradient in the Tatra Mountains, Poland. Trees - Structure and Function 20(6): 735-746.10.1007/s00468-006-0088-9.
 
29.
Selås V, Piovesan G, Adams JM and Bernabei M, 2002. Climatic factors controlling reproduction and growth of Norway spruce in southern Norway. Canadian Journal of Forest Research 32(2): 217 - 225.10.1139/x01-192.
 
30.
Schweingruber FH, 1986. Abrupt growth changes in conifers. IAWA Bulletin n. s. 7(4): 277-283.10.1163/22941932-90000998.
 
31.
Schweingruber FH, 1996. Tree Rings and Environment Dendroecology. Birmensdorf, Swiss Federal Institute for Forest, Snow and Landscape Research. Berne, Stuttgart, Vienna, Haupt: 609pp.
 
32.
Schweingruber FH, Eckstein D, Serre-Bachet F and Bräker OU, 1990. Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia 8: 9-38.
 
33.
Schweingruber FH, Wehrli U, Aellen-Rumo K and Aellen M, 1991. Weiserjahre als Zeiger extremer Standortseinflüsse (A dendrochronological study on trees near an incineration dump). Schweizerische Zeitschrift für Forstwesen 142: 33-52 (in German).
 
34.
Skalický V 1998. Fytogeografický rozbor květeny Šumavy a přilehlých území (Phytogeographical study of flora of The Šumava Mountains and the closed regions). Zprávy České Botanické společnosti, 32: 117-121 (in Czech).
 
35.
Skalický V and Skalická A, 1988. Picea A. Dieter - smrk. In: Hejný S and Slavík B, eds., Květena ČR 1, Academia, Praha: 317-322 (in Czech).
 
36.
Solberg BO, Hofgaard A and Hytteborn H, 2002. Shifts in radial growth responses of coastal Picea abies induced by climatic change during the 20th century, central Norway. Ecoscience 9(1): 79-88.10.1080/11956860.2002.11682693.
 
37.
Spálený J, 1980. Vliv kouřových imisí na mrazuvzdornost smrku ztepilého (Influence of fumous immisions on frost-tolerance of Norway spruce). Lesnická práce 59: 411-414 (in Czech).
 
38.
Spiecker H, 1991. Growth variation and environmental stress:long-term observations on permanent research plots in southwestern Germany. Water Air Soil Pollution 54: 247-256.10.1007/978-94-011-3252-7_21.
 
39.
Spiecker H, 2002. Tree rings and forest management in Europe. Dendrochronologia 20(1-2): 191-202.10.1078/1125-7865-00016.
 
40.
Svoboda M and Tichý T, 2004. Struktura a dynamika lesních porostů a kvantitativní a kvalitativní charakter odumřelé dřevní biomasy v oblasti Trojmezenského pralesa (Structure and dynamics of forest and quantitative and qualitative character dead woody biomass in the area of Trojmezná forest). AOPK, Praha. Příroda: 299-310 (in Czech).
 
41.
Tranquillini W, 1979. Physiological Ecology of Alpine Timberline, Tree Existence at High Altitudes with Special Reference to the European Alps. Ecological Studies 31. Berlin, Heidelberg, New York, Springer-Verlag: 137pp.10.1007/978-3-642-67107-4.
 
42.
Visser H and Molenaar J, 1992. Estimating trends and stochastic functions in dendroecology with an application to fir decline. Forest Science 38(2): 221-234.10.1093/forestscience/38.2.221.
 
43.
Vitas A, 2004. Tree rings of Norway spruce (Picea abies (L.) Karsten) in Lithuania as drought indicators: dendroecological approach. Polish Journal of Ecology 52(2): 201-210.
 
44.
Wilson RJS and Hopfmueller M, 2001. Dendrochronological investigations of Norway spruce along an elevational transect in the Bavarian Forest, Germany. Dendrochronologia 19(1): 67-79.
 
45.
Wilson R and Elling W, 2004. Temporal instability in tree-growth/climate response in the Lower Bavarian Forest region: implications for dendroclimatic reconstruction. Trees - Structure and Function 18(1): 19-28.10.1007/s00468-003-0273-z.
 
46.
Wilson RJS, Luckman BH and Esper J, 2005a. A 500 year dendroclimatic reconstruction of spring-summer precipitation from the lower Bavarian Forest region, Germany. International Journal of Climatology 25(5): 611-630.10.1002/joc.1150.
 
47.
Wilson R, Frank D, Topham J, Nicolussi K and Esper J, 2005b. Spatial reconstruction of summer temperatures in Central Europe for the last 500 years using annually resolved proxy records: problems and opportunities. Boreas 34(4): 490-497.10.1080/03009480500231351.
 
eISSN:1897-1695
ISSN:1733-8387
Journals System - logo
Scroll to top