Oak decline in a southern Finnish forest as affected by a drought sequence
More details
Hide details
Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
Finnish Forest Research Institute, Northern Unit, P.O. Box 16, 96301, Rovaniemi, Finland
The City of Helsinki, The Public Works Department, Street and Park Division, P.O. Box 1515, 00099, Helsinki, Finland
Finnish Meteorological Institute, P.O. Box 503, 00101, Helsinki, Finland
Online publication date: 2013-12-20
Publication date: 2014-03-01
Geochronometria 2014;41(1):92-103
We investigated the decline of a pedunculate oak (Quercus robur L.) forest growing on shallow soil at the northern distributional limit of the species in southern Finland, using the dendroclimatic approach. About 200-year-old trees in three vigour classes — healthy, declining and dead — were sampled in 2008. Annual tree-ring, earlywood and latewood widths were measured and chronologies were established. The tree-ring data were correlated with monthly and seasonal climate data. Radial increment of oaks was positively related to the June and July precipitations. This was expressed especially in total ring width and latewood width, whereas the earlywood was more influenced by the warmer winter and spring. Furthermore, the correlation between the current year earlywood width and the preceding year latewood width was higher than between the earlywood and latewood of the same year. The analyses showed that the dead oaks and part of the declining oaks had ceased growing during 2005–2007 after a decadelong summer drought series. This indicates a time lag in the oak dieback. The radial growth of the declining and the dead oaks had dropped already since the 1990s, while the healthy oaks had better longterm growth and higher adaptive capacity to climate variation.
Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A and Cobb N, 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259(4): 660–684, DOI 10.1016/j.foreco.2009.09.001.
Andersson M, Milberg P and Bergman K-O, 2011. Low predeath growth rates of oak (Quercus robur L.) — Is oak death a long-term process induced by dry years? Annals of Forest Science 68(1): 159–168, DOI 10.1007/s13595-011-0017-y.
Aniol RW, 1983. Tree-ring analysis using CATRAS. Dendrochronologia 1: 45–53.
Arend M, Kuster T, Günthardt-Goerg MS and Dobbertin M, 2011. Provenance-specific growth responses to drought and air warming in three European oak species (Quercus robur, Q. petraea and Q. pubescens). Tree Physiology 31(3): 287–297, DOI 10.1093/treephys/tpr004.
Askeyev OV, Tischin D, Sparks TH and Askeyev IV, 2005. The effect of climate on the phenology, acorn crop and radial increment of pedunculate oak (Quercus robur) in the middle Volga region, Tatarstan, Russia. International Journal of Biometeorology 49(4): 262–266, DOI 10.1007/s00484-004-0233-3.
Axelrod DI, 1983. Biogeography of oaks in the Arcto-Tertiary province. Annals of the Missouri Botanical Garden 70(4): 629–657, DOI 10.2307/2398982.
Barklund P and Wahlström K, 1998. Death of oaks in Sweden since 1987. In: Cech TL, Hartman G, Tomiczek C, eds., Disease/environment interactions in forest decline. Proceedings of a workshop of the working party Disease/Environment Interactions in Forest Decline IUFRO 7.02.06, 16–21 March 1998. Federal Forest Research Centre, Vienna, Austria: 193.
Bigler C and Bugmann H, 2004. Predicting the time of tree death using dendrochronological data. Ecological Applications 14(3): 902–914, DOI 10.1890/03-5011.
Biondi F and Waikul K, 2004. DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Computers & Geosciences 30(3): 303–311, DOI 10.1016/j.cageo.2003.11.004.
Bridge MC, Gasson PE and Cutler DF, 1996. Dendroclimatological observations on trees at Kew and Wakehurst Place: event and pointer years. Forestry 69(3): 263–269, DOI 10.1093/forestry/69.3.263.
Briffa KR and Cook ER, 1990. Methods of response function analyses. In: Cook ER and Kairiukstis LA, eds., Methods of dendrochronology: Applications in the environmental sciences. International Institute for Applied Systems Analysis/Kluwer Academic Publishers, Dordrecht: 240–247.
Briffa KR, Jones PD, Bartholin TS, Eckstein D, Schweingruber FH, Karlén W, Zetterberg P and Eronen M, 1992. Fennoscandian summers from AD 500: temperature changes on short and long timescales. Climate Dynamics 7(3): 111–119, DOI 10.1007/BF00211153.
Briffa KR and Melvin TM, 2011. A closer look at regional curve standardization of tree-ring records: justification of the need, a warning of some pitfalls, and suggested improvements in its application. In: Hughes MK, Swetnam TW, Diaz HF, eds., Dendroclimatology: progress and prospects. Springer, Dordrecht: 113–145.
Bronisz A, Bijak S, Bronisz K and Zasada M, 2012. Climate influence on radial increment of oak (Quercus sp.) in central Poland. Geochronometria 39(4): 276–284, DOI 10.2478/s13386-012-0011-7.
Catton HA, St George S and Remphrey WR, 2007. An evaluation of bur oak (Quercus macrocarpa) decline in the urban forest of Winnipeg, Manitoba, Canada. Arboriculture & Urban Forestry 33(1): 22–30.
Cedro A, 2007. Tree-ring chronologies of downy oak (Quercus pubescens), pedunculate oak (Q. robur) and sessile oak (Q. petraea) in the Bielinek Nature Reserve: Comparison of the climatic determinants of tree-ring width. Geochronometria 26: 39–45, DOI 10.2478/v10003-007-0005-2.
Cherubini P, Fontana G, Rigling D, Dobbertin M, Brang P and Innes JL, 2002. Tree-life history prior to death: two fungal root pathogens affect tree-ring growth differently. Journal of Ecology 90(5): 839–850, DOI 10.1046/j.1365-2745.2002.00715.x.
Cook ER, 1985. A time series analysis approach to tree ring standardization. PhD Dissertation, University of Arizona: 171pp.
Cook ER, 1987. The decomposition of tree-ring series for environmental studies. Tree-Ring Bulletin 47: 37–59.
Cook ER and Peters K, 1981. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendrocli-matic studies. Tree-Ring Bulletin 41: 45–53.
Čufar K, De Luis M, Zupančič M and Eckstein D, 2008. A 548-year tree-ring chronology of oak (Quercus spp.) for southeast Slovenia and its significance as dating tool and climate archive. Tree-Ring Research 64(1): 3–15, DOI 10.3959/2007-12.1.
Dahl E, 1998. The phytogeography of Northern Europe: British Isles, Fennoscandia and adjacent areas. Cambridge University Press, Cambridge: 297pp, DOI 10.1017/CBO9780511565182.
Dickson RE and Tomlinson PT, 1996. Oak growth, development and carbon metabolism in response to water stress. Annals of Forest Science 53(2–3): 181–196, DOI 10.1051/forest:19960202.
Dobbertin M, 2005. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. European Journal of Forest Research 124(4): 319–333, DOI 10.1007/s10342-005-0085-3.
DoleŽal J, Mazůrek P and Klimešová J, 2010. Oak decline in southern Moravia: the association between climate change and early and late wood formation in oaks. Preslia 82(3): 289–306.
Drobyshev I, Anderson S and Sonesson K, 2007a. Crown condition dynamics of oak in southern Sweden 1988-1999. Environmental Monitoring and Assessment 134(1–3): 199–210, DOI 10.1007/s10661-007-9610-9.
Drobyshev I, Linderson H and Sonesson K, 2007b. Temporal mortality pattern of pedunculate oaks in southern Sweden. Dendrochronolo-gia 24(2–3): 97–108, DOI 10.1016/j.dendro.2006.10.004.
Drobyshev I, Niklasson M, Eggertsson O, Linderson H and Sonesson K, 2008. Influence of annual weather on growth of pedunculate oak in southern Sweden. Annals of Forest Science 65(5): 512, DOI 10.1051/forest:2008033.
EUFORGEN, 2009. Distribution map of pedunculate oak (Quercus robur). WEB site: Accessed 2013 March 25.
Faber-Langendoen D and Tester JR, 1993. Oak mortality in sand savannas following drought in East-Central Minnesota. Bulletin of the Torrey Botanical Club 120(3): 248–256, DOI 10.2307/2996989.
Fink AH, Brücher T, Krüger A, Leckebusch GC, Pinto JG and Ulbrich U, 2004. The 2003 European summer heatwaves and drought — synoptic diagnosis and impacts. Weather 59(8): 209–216, DOI 10.1256/wea.73.04.
Finnish Meteorological Institute, 2012. Terminen kasvukausi 2006 (The thermal growing season 2006). WEB site: Accessed 2013 January 22 (in Finnish).
Friedrichs DA, Büntgen U, Frank DC, Esper J, Neuwirth B and Löffler J, 2009. Complex climate controls on 20th century oak growth in Central-West Germany. Tree Physiology 29(1): 39–51, DOI 10.1093/treephys/tpn003.
Fritts HC, 1976. Tree Rings and Climate. Academic Press, London: 567pp.
Führer E, 1998. Oak decline in central Europe: a synopsis of hypotheses. In: McManus ML and Liebhold AM, eds., Proceedings: population dynamics, impacts, and integrated management of forest defoliating insects. USDA Forest Service, General Technical Report NE-247: 7–24.
García González I and Eckstein D, 2003. Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiology 23(7): 497–504, DOI 10.1093/treephys/23.7.497.
Gibbs JN and Greig BJW, 1997. Biotic and abiotic factors affecting the dying back of pedunculate oak Quercus robur L. Forestry 70(4): 399–406, DOI 10.1093/forestry/70.4.399.
Gori Y, Cherubini P, Camin F and La Porta N, 2013. Fungal root pathogen (Heterobasidion parviporum) increases drought stress in Norway spruce stand at low elevation in the Alps. European Journal of Forest Research 132(4): 607–619, DOI 10.1007/s10342-013-0698-x.
Hartmann G, Blank R and Lewark S, 1989. Eichensterben in Norddeutschland. Verbreitung, Schadbilder, mögliche Ursachen (Oak decline in Northern Germany. Distribution, symptoms, probable causes). Forst und Holz 44(18): 475–487 (in German with English summary).
Helama S, Läänelaid A, Raisio J and Tuomenvirta H, 2009. Oak decline in Helsinki portrayed by tree-rings, climate and soil data. Plant and Soil 319(1–2): 163–174, DOI 10.1007/s11104-008-9858-z.
Helama S, Läänelaid A, Raisio J and Tuomenvirta H, 2012. Mortality of urban pines in Helsinki explored using tree ring and climate records. Trees — Structure and Function 26(2): 353–362, DOI 10.1007/s00468-011-0597-z.
Hilasvuori E and Berninger F, 2010. Dependence of tree ring stable isotope abundances and ring width on climate in Finnish oak. Tree Physiology 30(5): 636–647, DOI 10.1093/treephys/tpq019.
Holmes RL, 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43: 69–78.
Holopainen M, Leino O, Kämäri H and Talvitie M, 2006. Drought damage in the park forests of the city of Helsinki. Urban Forestry & Urban Greening 4(2): 75–83, DOI 10.1016/j.ufug.2005.11.002.
Honkanen J, 2009. Tammiston luonnonsuojelualueen ja rauhoitettujen luontotyyppien hoitoja käyttösuunnitelma 2010–2020 (Tammisto Nature Reserve and protected nature types conservation and landuse plan 2010–2020). Ympäristökeskus, Vantaan kaupunki: 12pp (in Finnish).
Hydrografinen toimisto, 1944. Vuosikirja 12 Årsbok 1937–1940 (Year-book 1937–1940). Valtioneuvoston kirjapaino, Helsinki: 118pp (in Finnish and Swedish).
Hydrografinen toimisto, 1948. Vuosikirja 13 Årsbok 1941–1945 (Yearbook 1941–1945). Valtioneuvoston kirjapaino, Helsinki: 123pp (in Finnish and Swedish).
Jones EW, 1959. Biological flora of the British Isles: Quercus L. Journal of Ecology 47(1): 169–222.
Jönsson U, Jung T, Sonesson K and Rosengren U, 2005. Relationships between health of Quercus robur, occurrence of Phytophthora species and site conditions in southern Sweden. Plant Pathology 54(4): 502–511, DOI 10.1111/j.1365-3059.2005.01228.x.
Jung T, Blaschke H and Oßwald W, 2000. Involvement of soilborne Phytophthora species in Central European oak decline and the effect of site factors on the disease. Plant Pathology 49(6): 706–718, DOI 10.1046/j.1365-3059.2000.00521.x.
Kitin P, Funada R, Sano Y, Beeckman H and Ohtani J, 1999. Variations in the lengths of fusiform cambial cells and vessel elements in Kalopanax pictus. Annals of Botany 84(5): 621–632, DOI 10.1006/anbo.1999.0957.
Kuusisto E, 2003. Paha kuivuus lisäsi jatkosodan ankeutta (Bad drought added to the Continuation War bleakness). Helsingin Sanomat 12.4.2003: C17 (in Finnish).
Kuusisto E, 2004. Kuvaus 1940-luvun poikkeuksellisesta kuivuudesta (A depiction of the exceptional dryness in the 1940s). In: Silander J and Järvinen A, eds., Vuosien 2002–2003 poikkeuksellisen kuivuuden vaikutukset (Effects of Severe Drought of 2002–2003). Suomen ympäristökeskus 731: 48 (in Finnish).
Läänelaid A, 2000. Five pine samples represent climate impact as well as eleven pines. University of Joensuu, Faculty of Forestry, Research Notes 108: 119–128.
Läänelaid A, Sohar K and Meikar T, 2008. Present state and chronology of oaks in an oak forest in Saaremaa Island, Estonia. Baltic Forestry 14(1): 34–43.
Landmann G and Dreyer E, eds., 2006. Impacts of drought and heat on forest. Synthesis of available knowledge, with emphasis on the 2003 event in Europe. Annals of Forest Science 63(6): 567–568, DOI 10.1051/forest:2006062.
Li M-H, Cherubini P, Dobbertin M, Arend M, Xiao W-F and Rigling A, 2013. Responses of leaf nitrogen and mobile carbohydrates in different Quercus species/provenances to moderate climate changes. Plant Biology 15(SI1): 177–184, DOI 10.1111/j.1438-8677.2012.00579.x.
Manion PD, 1981. Tree disease concepts. Prentice Hall, Englewood Cliff, New Jersey: 399pp.
Matisons R and Brūmelis G, 2012. Influence of climate on tree-ring and earlywood vessel formation in Quercus robur in Latvia. Trees — Structure and Function 26(4): 1251–1266, DOI 10.1007/s00468-012-0701-z.
Matisons R, Elferts D and Brūmelis G, 2012. Changes in climatic signals of English oak tree-ring width and cross-section area of earlywood vessels in Latvia during the period 1900–2009. Forest Ecology and Management 279: 34–44, DOI 10.1016/j.foreco.2012.05.029.
McCracken FI, 1985. Oak decline and mortality in the South. In: Proceedings, Third Symposion of Southeastern Hardwoods, Atlanta, 16–17 April 1985. USDA Forest Service, Dothan: 77–81.
Nola P, 1996. Climatic signal in earlywood and latewood of deciduous oaks from northern Italy. In: Dean JS, Meko DM, Swetnam TW, eds., Tree Rings, Environment and Humanity: Proceedings of the international conference, Radiocarbon. Department of Geosciences, University of Arizona, Tucson: 249–258.
Pedersen BS, 1998. The role of stress in the mortality of midwestern oaks as indicated by growth prior to death. Ecology 79(1): 79–93, DOI 10.2307/176866.
Peñuelas J, Lloret F and Montoya R, 2001. Severe drought effects on Mediterranean woody flora in Spain. Forest Science 47(2): 214–218.
Pilcher JR and Gray B, 1982. The relationships between oak tree growth and climate in Britain. Journal of Ecology 70(1): 297–304, DOI 10.2307/2259880.
Rainio RJ, 1977. Tammen levinneisyydestä läntisellä Uudellamaalla ja Turunmaan itäisemmissä osissa (On the distribution of oak (Quercus robur) in the southwestern-most parts of Finland). Silva Fennica 11(2): 127–135 (in Finnish with English summary).
Repo T, Mononen K, Alvila L, Pakkanen TT and Hänninen H, 2008. Cold acclimation of pedunculate oak (Quercus robur L.) at its northernmost distribution range. Environmental and Experimental Botany 63(1–3): 59–70, DOI 10.1016/j.envexpbot.2007.10.023.
Rinn F, 2003. TSAP-Win. Time series analysis and presentation for dendrochronology and related applications. Version 0.53 for Microsoft Windows. User Reference. Rinntech Heidelberg, Heidelberg: 91 pp.
Rozas V, 2001. Detecting the impact of climate and disturbances on tree-rings of Fagus sylvatica L. and Quercus robur L. in a lowland forest in Cantabria, Northern Spain. Annals of Forest Science 58(3): 237–251, DOI 10.1051/forest:2001123.
Rozas V, 2005. Dendrochronology of pedunculate oak (Quercus robur L.) in an old-growth pollarded woodland in northern Spain: tree-ring growth responses to climate. Annals of Forest Science 62(3): 209–218, DOI 10.1051/forest:2005012.
Rozas V and García González I, 2012. Too wet for oaks? Inter-tree competition and recent persistent wetness predispose oaks to rain-fall-induced dieback in Atlantic rainy forest. Global and Planetary Change 94–95: 62–71, DOI 10.1016/j.gloplacha.2012.07.004.
Ruseckas J, 2006. Impact of climatic fluctuations on radial increment of English oak (Quercus robur L.). Ecologija 1: 16–24.
Santini A, Bottacci A and Gellini R, 1994. Preliminary dendroecologi-cal survey on pedunculate oak (Quercus robur L) stands in Tusca-ny (Italy). Annals of Forest Science 51(1): 1–10, DOI 10.1051/forest:19940101.
Sass-Klaassen U, Sabajo CR and den Ouden J, 2011. Vessel formation in relation to leaf phenology in pedunculate oak and European ash. Dendrochronologia 29(3): 171–175, DOI 10.1016/j.dendro.2011.01.002.
Scharnweber T, Manthey M, Criegee C, Bauwe A, Schröder C and Wilmking M, 2011. Drought matters — declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in northeastern Germany. Forest Ecology and Management 262(6): 947–961, DOI 10.1016/j.foreco.2011.05.026.
Schweingruber FH, 2007. Wood structure and environment. Springer-Verlag, Berlin: 279pp.
Silander J and Järvinen EA, eds., 2004. Vuosien 2002–2003 poikkeuksellisen kuivuuden vaikutukset (Effects of Severe Drought of 2002–2003). Suomen ympäristö 731: 79pp (in Finnish with English abstract).
Siwecki R and Ufnalski K, 1998. Review of oak stand decline with special reference to the role of drought in Poland. European Journal of Forest Pathology 28(2): 99–112, DOI 10.1111/j.1439-0329.1998.tb01171.x.
Sonesson K, 1999. Oak decline in southern Sweden. Scandinavian Journal of Forest Research 14(4): 368–375, DOI 10.1080/02827589950152692.
Starkey DA and Oak SW, 1989. Site factors and stand conditions associated with oak decline in southern upland hardwood forests. In: Rink G and Budelsky CA, eds., Proceedings of the Seventh Central Hardwoods Forest Conference, Carbondale, IL, 5–8 March 1989. USDA Forest Service, General Technical Report NC-132: 95–102.
Starkey DA, Oak SW, Ryan GW, Tainter FH, Redmond C and Brown HD, 1989. Evaluation of oak decline areas in the south. USDA Forest Service, Protection Report R8-PR 17: 39pp.
Starkey DA, Oliveria F, Mangini A and Mielke M, 2004. Oak decline and red oak borer in the interior highlands of Arkansas and Missouri: natural phenomena, severe occurrences. In: Spetich MA, ed., Upland oak ecology symposium: history, current conditions, and sustainability. USDA Forest Service, General Technical Report SRS-73: 217–222.
Stewart MN, 1913. Relation of precipitation to tree growth. Monthly Weather Review 41(9): 1287–1297.<1287:ROPTTG>2.0.CO;2.
Tesfa TK, Tarboton DG, Chandler DG and McNamara JP, 2009. Modeling soil depth from topographic and land cover attributes. Water Resources Research 45(10): W10438, DOI 10.1029/2008WR007474.
Tessier L, Nola P and Serre-Bachet F, 1994. Deciduous Quercus in the Mediterranean region: tree-ring/climate relationships. New Phytologist 126(2): 355–367, DOI 10.1111/j.1469-8137.1994.tb03955.x.
Thomas FM and Hartmann G, 1998. The rooting patterns and soil water relations of healthy and damaged stands of mature oak (Quercus robur L. and Quercus petraea [Matt.] Liebl.). Plant and Soil 203(1): 145–158, DOI 10.1023/A:1004305410905.
Thomas FM, Blank R and Hartmann G, 2002. Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. Forest Pathology 2(4–5): 277–307, DOI 10.1046/j.1439-0329.2002.00291.x.
Tuomenvirta H, 2004. Reliable estimation of climatic variations in Finland. Finnish Meteorological Institute Contributions 43: 1–79.
Wargo PM, 1996. Consequences of environmental stress on oak: predisposition to pathogens. Annals of Forest Science 53(2–3): 359–368, DOI 10.1051/forest:19960218.
Ympäristöraportoinnin asiantuntijatyöryhmä, 2004. Helsingin kaupungin ympäristöraportti 2003 (Helsinki City environmental report 2003). Environment Centre, City of Helsinki, Helsinki: 46pp (in Finnish).
Zang C, Pretzsch H and Rothe A, 2012. Size-dependent responses to summer drought in Scots pine, Norway spruce and common oak. Trees — Structure and Function 26(2): 557–569, DOI 10.1007/s00468-011-0617-z.
Journals System - logo
Scroll to top