RESEARCH PAPER
Progress in the holocene chrono-climatostratigraphy of Polish territory
 
More details
Hide details
1
Department of Geomorphology and Hydrology of Mountains and Uplands PAS, Institute of Geography and Spatial Organization, Św. Jana 22, 31-018, Krakow, Poland
 
2
GADAM Centre of Excellence, Institute of Physics, Silesian University of Technology, Krzywoustego 2, 44-100, Gliwice, Poland
 
3
Faculty of Geology, Geophysics and Environmental Protection, AGH, University of Science and Technology, Mickiewicza 30, 30-059, Kraków, Poland
 
4
Institute of Nature Conservation PAS, Mickiewicza 33, 31-120, Kraków, Poland
 
5
W. Szafer Institute of Botany PAS, Lubicz 46, 31-512, Kraków, Poland
 
 
Online publication date: 2012-12-27
 
 
Publication date: 2013-03-01
 
 
Geochronometria 2013;40(1):1-21
 
KEYWORDS
ABSTRACT
The Holocene delivers a unique possibility to establish climatic stratigraphic boundaries based on detailed chronostratigraphy reflected in various facies of continental sediments, in their lithological parameters and organic remains. These sediments are dated by the 14C method in the case of organic remains, by counting annual laminations in lacustrine facies, and by dendrochronological method in the case of fluvial sediments. The existence of well dated profiles enables to reconstruct various climatic parameters like amplitudes of seasonal temperatures, types and frequency of extreme rainfalls and floods and, finally, to distinguish rare rapid changes and most frequent gradual ones. This reconstruction is based on the analogous effects of various types of present-day rainfalls. The current authors present a critical review of existing chronostratigraphic divisions starting from simple millennial division by Mangerud based on Scandinavian palynological stratigraphy of peat-bogs and Starkel’s concept based on fluctuations in rainfall and runoff regime reflected in fluvial and other facies of continental deposits. In the last decades, the calibration of 14C dates allowed a new approach to be used for the construction of the probability distribution function of these dates in various facies or types of sediments, which formed a background for distinguishing and correlating climatic phases and defining boundaries between them. These approaches have been creating new opportunities for revision of the existing chronostratigraphy. The aim of this paper is to present a revised version of chronostratigraphic division based on climatic fluctuations reflected in various facies of sediments on the territory of Poland and discuss their correlation with other European regions and global climatic changes.
REFERENCES (146)
1.
Aitchison TC, Leese M, Michczyńska DJ, Mook WG, Otlet RL, Ottaway BS, Pazdur MF, van der Plicht J, Reimer PR, Scott MS, Stuiver M and Weninger B, 1989. A comparison of methods used for the calibration of radiocarbon dates. Radiocarbon 31(3): 846–864.
 
2.
Alexandrowicz SW, 1987. Analiza malakologiczna w badaniach osadów czwartorzędowych (Malacological analysis in Quaternary sediments research). Kwartalnik AGH, Geologia 12(1–2): 3–240 (in Polish).
 
3.
Alexandrowicz SW, 1996. Stages of increased mass movements in the Carpathians during the Holocene. Kwartalnik AGH, Geologia 22(3): 223–262 (in Polish with English summary).
 
4.
Alexandrowicz SW, 1997a. Holocene dated landslides in the Polish Carpathians. Palaeoclimate Research 19: 75–83.
 
5.
Alexandrowicz WP, 1997b. Malakofauna osadów czwartorzędowych i zmiany środowiska naturalnego Podhala w młodszym vistulianie i holocenie (Malacofauna of Quaternary sediments and changes of natura environmental of Podhale in younger Vistulian and Holocene). Folia Quaternaria 68: 7–132 (in Polish).
 
6.
Alexandrowicz WP, 2001. Late Vistulian and Holocene molluscan assemblages from calcareous tufa at Ostrysz Hill (Podhale Basin). Folia Malacologica 9(3): 159–169.
 
7.
Alexandrowicz WP, 2004. Molluscan assemblages of Late Glacial and Holocene calcareous tufas in Southern Poland. Folia Quaternaria 75, 3–309.
 
8.
Alexandrowicz WP, 2009. Malacostartigraphy of Vistulian and Holocene in Poland. Studia Quaternaria 26: 55–63.
 
9.
Arnold JR and Libby WF, 1951. Radiocarbon dates. Science 113(2927): 111–120, DOI 10.1126/science.113.2927.111.
 
10.
Bajgier-Kowalska M, 2008. Lichenometric dating of landslide episodes in the Western part of the Polish Flysch Carpathians. Catena 72(2): 224–234, DOI 10.1016/j.catena.2007.05.005.
 
11.
Baumgart-Kotarba M and Kotarba A, 1993. Late Glacial and Holocene lacustrine sediments of the Lake Czarny Staw Gąsienicowy in the Tatra Mountains. Dokumentacja Geograficzna 4–5: 9–30 (in Polish with English summary).
 
12.
Baumgart-Kotarba M, Kotarba A and Wachniew P, 1993. Young Holocene lacustrine sediments from Lake Morskie Oko in the High Tatra Mountains and their datings by use 210Pb and 14C. Dokumentacja Geograficzna 4–5: 45–61 (in Polish with English summary).
 
13.
Becker B, 1982. Dendrochronologie und Paläoökologie subfossiler Baumstämme aus Flussablagerungen (Paleoecology and dendrochronology of subfossil logs from river sediments). Mitteilungen der Kommission für Quarterforschung 5: 1–121 (in German).
 
14.
Berglund BE, Birks HJB, Ralska-Jasiewiczowa M, and Wright HE Jr., Eds., 1996. Palaeohydrological events during the last 15,000 years: Regional Syntheis of Palaeoecological Studies of Lakes and Mires in Europe. Chichester, New York, Brisbane, Toronto, Singapore, J. Wiley & Sons Ltd.: 764 pp.
 
15.
Birks HJB, 1979. Numerical methods for the zonation and correlation of biostratigraphical data. In: Berglund BE, Ed., Palaeohydrological changes in the temperate zone in the last 15.000 years. IGCP 158 B. Lake and mire environments. Project Guide 1: 99–123.
 
16.
Birks HJB, 1986. Numerical zonation, comparison and correlation of Quaternary pollen-stratigraphical data. In: Berglund BE, Ed., Handbook of Holocene Palaeoecology and Palaeohydrology. Chichester, New York, J. Wiley & Sons Ltd.: 743–774.
 
17.
Blockley SPE, Lane CS Hardiman M, Rasmussen SO, Seierstad IK, Steffensen JP Svensson A, Lotter AF, Turney CSM, Bronk Ramsey C and INTIMATE members, 2012. Synchronisation of palaeo-environmental records over the last 60,000 years, and an extended INTIMATE1 event stratigraphy to 48,000 b2k. Quaternary Science Reviews 36: 2–10, DOI 10.1016/j.quascirev.2011.09.017.
 
18.
Blytt A, 1882. Die Theorie der wechselnden kontinentalen und insularen Klimate (The theory of changes of continental and insular climate). Leipzig, Botanische Jahrbücher 2: 1–50 (in German).
 
19.
Bond GG, Kromer B, Beer J, Muscheler R, Evans M, Showers W, Hoffman S, Lotti-Bond R, Hajdas I and Bonani G, 2001. Persistent solar influence on North Atlantic Climate During the Holocene. Science 294: 2130–2136, DOI 10.1126/science.1065680.
 
20.
Bronk Ramsey C, 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2): 425–430.
 
21.
Bronk Ramsey C, 2001. Development of the radiocarbon calibration program. Radiocarbon 43(2A): 355–63.
 
22.
Bronk Ramsey C, 2006. OxCal program v 4.0 [software and documentation]. http://c14.arch.ox.ac.uk/oxcal....
 
23.
Brunnacker K, 1978. Der Niederrhein im Holozän (The Lower Rhine region in the Holocene). Fortschritte in der Geologie von Rheinland und Westfalen 28: 399–440 (in German).
 
24.
Buck CE, Kenworthy JB, Litton CD and Smith AFM, 1991. Combining archaeological and radiocarbon information: a Bayesian approach to calibration. Antiquity 65(249): 808–821.
 
25.
Czyżowska E, 1997. Zapis zdarzeń powodziowych na pograniczu boreału i atlantyku w osadach stożka napływowego w Podgrodziu (Record of flood events on the border of Boreal and the Atlantic in sediments of the alluvial fan in Podgrodzie). IGiPZ PAN Warszawa. Dokumentacja Geograficzna 5 (in Polish).
 
26.
Delorme A and Leuschner H-H, 1983. Dendrochronologische Befunde zur jüngeren Flussgeschichte von Main, Fulda und Oker (Dendrochronological findings in younger history of the river Main, Fulda and Oker). Eiszeitalter und Gegenwart 33: 45–57 (in German).
 
27.
Dobrowolski R, Alexandrowicz S, Bałaga K, Durakiewicz T and Pazdur A, 1999. Badania martwic wapiennych w obrębie źródliskowych torfowisk kopułowych we wschodniej Polsce (Research of the calcareous within domed spring mires in eastern Poland). In: Pazdur A, Bluszcz A, Stankowski W and Starkel L, Eds., Geochronologia Górnego Czwartorzędu w Polsce w świetle datowania radiowęglowego i luminescencyjnego. Wroc’aw, WIND-J. Wojewoda: 179–198 (in Polish).
 
28.
Firbas F, 1949/1952. Spät- und nacheiszeitliche Waldgeschichte Mitteleuropas nördlich der Alpen. (Late and postglacial forest history of Central Europe north of the Alps). Band 1: Jena, Allgemeine Waldgeschichte: 480 pp. Band 2: Jena, Waldgeschichte der einzelnen Landschaften: 183–201 (in German).
 
29.
Firbas F, 1954. Die Synchronisierung der mitteleuropäischen Pollendiagramme (The synchronization of the central European pollen diagrams). Danmarks Geologiske Undersøgelse II 80: 12–21 (in German).
 
30.
Frenzel B, Eronen M, Vorren KD and Glaser B, 1993. Oscillations of the alpine and polar tree limits in the Holocene. Palaoklimaforschung 9, Akad.Wiss. und Literatur, Mainz: 234 pp.
 
31.
Geyh MA, 1980. Holocene sea-level history:case study of the statistical evaluation of 14C dates. Radiocarbon 22(3): 695–704.
 
32.
Geyh MA and Jäkel D, 1974. Late Glacial and Holocene climatic history of the Sahara Desert from a statistical assay of 14C dates. Palaeogeography, Palaeoclimatology, Palaeoecology 15(3): 205–208, DOI 10.1016/0031-0182(74)90015-7.
 
33.
Geyh MA and Streif H, 1970. Studies on coastal movements and sea-level changes by means of the statistical evaluations of 14C-data. Proceedings of Symposium ‘Coastal Geodesy’, Munich 1970: 599–611.
 
34.
Gil E, Gilot E, Szczepanek K, Kotarba A and Starkel L, 1974. An Early Holocene landslide in the Beskid Niski and its significance for palaeogeographical reconstructions. Studia Geomorphologica Carpatho-Balcanica 8: 69–83.
 
35.
Godwin H, 1940. Pollen analysis and forest history of England and Wales. New Phytologist 39(4): 370–400, DOI 10.1111/j.1469-8137.1940.tb07149.x.
 
36.
Godwin H, 1956. The History of the British Flora. A Factual Basis for Phytogeography. Cambridge, The University Press: 383 pp.
 
37.
Godwin H, 1962. Half-life of Radiocarbon. Nature 195(4845): 984, DOI 10.1038/195984a0.
 
38.
Golthwait RP, 1966. Evidence from Alaskan glaciers of major climatic changes, in: World climate from 8000 to O B.C. Proceedings of International Symposium, Ryoal Meteorological Society, London: 15–33.
 
39.
Goslar T, Arnold M and Pazdur M, 1998. Variations of atmospheric 14C concentrations at the Pleistocene/Holocene trasition, reconstructed from the Lake Gościąż sediments. In: Ralska-Jasiewiczowa M, Goslar T, Madeyska T and Starkel L, eds, Lake Gościąż, central Poland. A monographic study. W Szafer Institute of Botany, Polish Academy of Sciences, Kraków: 162–171.
 
40.
Goslar T, Bałaga K, Arnold M, Tisnerat N, Starnawska E, Kuźniarski M, Chróst L, Walanus A and Więckowski K, 1999. Climate-related variations in the composition of the Lateglacial and Early Holocene sediments of Lake Perespilno (eastern Poland). Quaternary Science Reviews 18(7): 899–911, DOI 10.1016/S0277-3791(99)00004-9.
 
41.
Goslar T, Hercman H and Pazdur A, 2000. Comparison of U-series and radiocarbon dates of speleothems. Radiocarbon 42(3): 403–414.
 
42.
Goździk J and Pazdur MF, 1987. Frequency distribution of 14C dates from Poland in the time interval 12–45 kyr BP and its paleogeographical implications. Zeszyty Naukowe Politechniki Śląskiej, seria Matematyka-Fizyka, z. 56 Geochronometria 4: 27–42.
 
43.
Gradziński M, Górny A, Pazdur A and Pazdur MF, 2003. Origin of black coloured laminae In speleothems from the Kraków-Wieluń Upland, Poland. Boreas 32(3): 532–542, DOI 10.1111/j.1502-3885.2003.tb01233.x.
 
44.
Gregory KJ, Benito G, Dikau R, Golosov V, Jones JA, Macklin MG, Parsons AJ, Passmore DG, Poesen J, Soja R, Starkel L and Walling DE, 2006. Past hydrological events related to understanding global change: an ICSU research project. Catena 66(1–2): 2–13, DOI 10.1016/j.catena.2005.11.011.
 
45.
Grove J, 1988. The Little Ice Age. London — New York, Meuthen: 498 pp.
 
46.
Hoek WZ, 2008. The Last Glacial-Interglacial Transition. Episodes 31(2): 226–229.
 
47.
Hoek WZ, Yu ZC and Lowe JJ, 2008. INTegration of Ice-core, MArine, and TErrestrial records (INTIMATE): refining the record of the Last Glacial-Interglacial Transition. Quaternary Science Reviews 27(1–2): 1–5, DOI 10.1016/j.quascirev.2007.11.020.
 
48.
Hormes A, Muller BU and Schluchter C, 2001. The Alps with little ice: evidence for eight Holocene phases of reduced glacier extent in the Central Swiss Alps. The Holocene 11(3): 255–265, DOI 10.1191/095968301675275728.
 
49.
Jessen K, 1935. The composition of the forests in Northern Europe in epipalaeolithic time: Biologiske Meddelser 12(1): 64pp.
 
50.
Kalicki T, 1991. The evolution of the Vistula river valley between Cracow and Niepołomice in the Late Vistulian and Holocene times. In: Starkel L, Ed), Evolution of the Vistula river valley during the last 15 000 year. Part IV. Geographical Studies, Special Issue 6: 11–37.
 
51.
Kalicki T and Krąpiec M, 1995. Problems of dating alluvium using buried subfossil tree trunks: lessons from the “black oaks” of the Vistula Valley, Central Poland. The Holocene 5(2): 243–250, DOI 10.1177/095968369500500213.
 
52.
Kotarba A, 1995. Rapid mass wasting over last 500 years in the High Tatra Mountains. Quaestiones Geographicae, Special Issue 4: 177–183.
 
53.
Kotarba A, 1996. Lacustrine sediments as an indicator of environmental changes in the High Tatra. Dokumentacja Geograficzna 4: 33–47 (in Polish with English summary).
 
54.
Kotarba A, 2006. The Little Ice Age in the High Tatra Mounatins. Studia Quaternaria 23: 47–53.
 
55.
Kotarba A and Baumgart-Kotarba M, 1997. Holocene debris flow activity in the light of lacustrine sediments studies in the High Tatra Mountains. Palaeoclimate Research 19: 147–158.
 
56.
Kuc T, Różański K and Duliński M, 1998. Isotopic indicators of the Late-Glacial/Holocene transition recorded in the sediments of Lake Gościąż. In: Ralska-Jasiewiczowa M, Goslar T, Madeyska T and Starkel L, Eds., Lake Gościąż, Central Poland. A Monographic Study: 158–162.
 
57.
Krąpiec M, 1992. Skale dendrochronologiczne późnego holocenu po’udniowej i centralnej Polski (Late Holocene dendrochronological scales of southern and central Poland). Kwartalnik AGH — Geologia 18(3): 37–119.
 
58.
Krąpiec M, 1996. Subfossil oak chronology (474 BC-AD 1529) from Southern Poland. In: Dean JS, Meko DM and Swetnam TW, Eds., Tree Rings, Environment and Humanity. Radiocarbon, Special Issue: 813–819.
 
59.
Krąpiec M, 1998. Oak dendrochronology of the Neoholocene in Poland. Folia Quaternaria 69: 5–134.
 
60.
Krąpiec M, 2001. Holocene dendrochronological standards for subfossil oaks from the area of Southern Poland. Studia Quaternaria 18: 47–63.
 
61.
Kuzmin YV and Keates SG, 2005. Dates are not just data: Palaeolithic settlement patterns in Siberia derived from radiocarbon records. American Antiquity 70(4): 773–789.
 
62.
Lowe JJ, Rasmussen SO, Björck S, Hoek WZ, Steffensen JP, Walker MJC, Yu ZC and the INTIMATE group, 2008. Synchronisation of palaeoenvironmental events in the North Atlantic region during the Last Termination: a revised protocol recommended by the INTI-MATE group. Quaternary Science Reviews 27(1–2): 6–17, DOI 10.1016/j.quascirev.2007.09.016.
 
63.
Ložek V, 1964. Quartärmollusken der Tschechoslovakei (Quaternary mollusks of Czechoslovakia). Rozpravy Ustředniho Ustavu Geologického 31: 3–374 (in German).
 
64.
Macklin MG, Benito G, Gregory KJ, Johnstone E, Lewin J, Michczyńska DJ, Soja R, Starkel L and Thorndycraft VR, 2006. Past hydrological events reflected in the Holocene fluvial record of Europe. Catena 66(1–2): 145–154, DOI 10.1016/j.catena.2005.07.015.
 
65.
Magny M, 1993. Holocene fluctuation of lake levels in the French Jura and Sub-Alpine ranges, and their implications for past general circulation patterns. The Holocene 3(4): 306–313, DOI 10.1177/095968369300300402.
 
66.
Magny M, Begeot C, Guio, J and Peyron O, 2003. Contrasting patterns of hydrological change in Europe in response to Holocene climate cooling phases. Quaternary Science Reviews 22(15–17): 1589–1596, DOI 10.1016/S0277-3791(03)00131-8.
 
67.
Mangerud J, Anderson ST, Berglund BE and Danner JJ, 1974. Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas 3(3): 109–126 DOI 10.1111/j.1502-3885.1974.tb00669.x.
 
68.
Margielewski W, 1998. Landslide phases in the Polish Outer Carpathians and their relation to climatic changes in the Late Glacial and the Holocene. Quaternary Studies in Poland 15: 37–53.
 
69.
Margielewski W, 2001. Late Glacial and Holocene climatic changes registered in forms and deposits of the Klaklowo landslide (Beskid Średni Range, Outer Carpathians). Studia Geomorphologica Carpatho-Balcanica 35: 63–79.
 
70.
Margielewski W, Ed., 2003. Late Glacial — Holocene palaeoenvironmental changes in the Western Carpathians: case studies of landslide forms and deposits. Folia Quaternaria 74: 96pp.
 
71.
Margielewski W, 2006. Records of the Late Glacial-Holocene palaeoenvironmental changes in landslide forms and deposits of the Beskid Makowski and Beskid Wyspowy Mts. Area (Polish Outer Carpathians). Folia Quaternaria 76: 149pp.
 
72.
Margielewski W, Krąpiec M, Valde-Nowak P and Zernitskaya V, 2010. A neolithic yew bow in the Polish Carpathians. Evidence of the impact of human activity on mountainous palaeoenvironment from the Kamiennik landslide peat bog. Catena 80(3): 141–153, DOI 10.1016/j.catena.2009.11.001.
 
73.
Mayewski PA, Rohling EE, Stager JC, Karlen W, Maasch KA, Meeker LD, Meyerson EA, Gasse F, van Kreveld S, Holmgren K, Lee-Thorp J, Rosqvist G, Rack F, Staubwasser M, Schneider RR and Steig EJ, 2004. Holocene climatic variability. Quaternary Research 62(3): 243–255, DOI 10.1016/j.yqres.2004.07.001.
 
74.
Michczyńska DJ and Hajdas I, 2010. Frequency Distribution of 14C Dates for Chronostratigraphic Reconstructions: Study Case Alaska Region. Radiocarbon 52(2–3): 1041–1055.
 
75.
Michczyńska DJ and Pazdur A, 2004. A shape analysis of cumulative probability density function of radiocarbon dates set in the study of climate change in Late Glacial and Holocene. Radiocarbon 46(2): 733–744.
 
76.
Michczyńska DJ, Pazdur MF and Walanus A, 1990. Bayesian approach to probabilistic calibration of radiocarbon dates. PACT 29: 69–79.
 
77.
Michczyńska DJ, Michczyński A and Pazdur A, 2007. Frequency distribution of radiocarbon dates as a tool for reconstructing environmental changes. Radiocarbon 49(2): 799–806.
 
78.
Michczyńska DJ, Michczyński A, Pazdur A and Starkel L, 2008. Kalendarzowe wartości granic chronostratygraficznych dla terenu Polski oszacowane na podstawie dużych zbiorów dat 14C (calendar values of chronostratigraphic boundaries for Polish territory evaluated on the basis of large sets of 14C dates). Prace Komisji Paleogeografii Czwartorzędu PAU, Kraków VI: 163–171 (in Polish with English summary).
 
79.
Michczyński A and Michczyńska DJ, 2006. The efect of pdf peaks’ height increase during calibration of radiocarbon date sets. Geochronometria 25: 1–4.
 
80.
Nalepka D, 2005. Late Glacial and Holocene palaeoecological conditions and changes of vegetation cover under early farming activity in the south Kujawy region (central Poland). Acta Palaeobotanica, Supplement 6: 1–90.
 
81.
Nalepka D and Walanus A, 2003. Data processing in pollen analysis. Acta Palaeobotanica 43(1): 125–134.
 
82.
Neustadt MI, 1957. The history of forest and Holocene palaeogeography in the USSR. Moscow, USSR Academy of Sciences Press: 404 pp (in Russian).
 
83.
Niedziałkowska E, Skubisz A and Starkel L, 1977. Lithology of the Eo — and Mesoholocene alluvia in Podgrodzie upon Wisłoka river. Studia Geomorphologica Carpatho-Balcanica 11: 89–100.
 
84.
Niewiarowski W, 1987. Evolution of the lower Vistula valley in the Unisław Basin and the river gap to the North of Bydgoszcz Foron. In: Starkel L, Ed., Evolution of the Vistula River Valley during the last 15,000 years. Geographical Studies, Special Issue 4(2): 234–252.
 
85.
Niewiarowski W, Noryśkiewicz B, Piotrowski W and Sinkiewicz M, 1995. An outline of natural and anthropogenic changes of geographical environment in the Biskupin area during the last 7000 years. Quaternary Studies in Poland 13: 77–88.
 
86.
Nowaczyk B and Okuniewska-Nowaczyk I, 1999. Wiek osadów biogenicznych i wybranych zdarzeń geomorfologicznych w Guzowie koło Lubska w świetle datowania radiowęglowego i palinologicznego (Age of biogenic sediments and selected geomorphological events In Guzów near Lubsko In the Ligot of radiocarbon and palynological dating). In: Pazdur A, Bluszcz A, Stankowski W and Starkel L, Eds., Geochronologia górnego czwartorzędu Polski: 265–275 (In Polish).
 
87.
Nowaczyk B, Nalepka D and Okuniewska-Nowaczyk I, 2002. Rola człowieka prahistorycznego w kształtowaniu form i osadów na wybranych obszarach Niziny Wielkopolsko-Kujawskiej (The role of prehistoric man in the formation of forms and deposits on selected areas of the Wielkopolska-Kujawy Lowlands). Geographia. Studia et Dissertationes 25: 34–60 (in Polish with English summary).
 
88.
Nilsson T, 1935. Die pollenanalytische Zonengliederung der spät- und postglazialen Bildungen Schonens (The pollen zonation of the late-and post-glacial formations of Scania). Geologiska Föreningens i Stockholm Förhandlingar 57: 385–562 (in German).
 
89.
Patzelt G, 1972. Die spätglazialen Stadien und postglazialen Schwankungen von Ostalpengletschern (The late glacial stages and postglacial fluctuations of Eastern Alpine glaciers). Berichte der Deutschen Botanischen Gesellschaft 85: 47–57 (in German).
 
90.
Pazdur A, 1988. The relation between carbon isotope composition and apparent age of freshwater tufaceous sediments. Radiocarbon 30(1): 7–18.
 
91.
Pazdur A, 2000. Radiocarbon in freshwater carbonates as tool of Late Quaternary studies. Geologos 5: 135–154.
 
92.
Pazdur A and Pazdur MF, 1986. Radiocarbon chronology of the Late Glacial period in Poland. Acta Interdisciplinaria Archaeologica IV: 61–71.
 
93.
Pazdur A, Pazdur MF, Starkel J and Szulc J, 1988. Stable isotopes of the Holocene calcareous tufa in southern Poland as paleoclimatic indicators. Quaternary Research 30(2): 177–189, DOI 10.1016/0033-5894(88)90022-1.
 
94.
Pazdur A, Pazdur MF and Szulc J, 1988. Radiocarbon dating of Holocene calcareous tufa from south Poland. Radiocarbon 30: 133–146.
 
95.
Pazdur A, Pazdur MF, Pawlyta J, Górny A and Olszewski M, 1995. Paleoclimatic implications of radiocarbon dating of speleothems from the Cracow-Wieluń Upland, Southern Poland. In: Cook GT, Harkness DD, Miller BF and Scott EM, Eds., Proceedings of the 1994 Radiocarbon Conference. Radiocarbon 37(2): 103–110.
 
96.
Pazdur A, Goslar T, Gradziński M and Hercman H, 1999a. Zapis zmian hydrologicznych i klimatycznych w obszarach krasowych Polski Południowej na podstawie badań izotopowych (Record of hydrological and climatic changes in the South Polish karst areas on the basis of isotopic studies). In: Pazdur A, Bluszcz A, Stankowski W and Starkel L, Eds., Geochronologia Górnego Czwartorzędu w Polsce w świetle datowania radiowęglowego i luminescencyjnego. Wrocław, WIND-J. Wojewoda: 157–178 (in Polish).
 
97.
Pazdur A, Goslar T, Pawlyta M, Hercman H and Gradziński M, 1999b. Variations of isotopic composition of carbon in the karst environment from Southern Poland, present and past. Radiocarbon 41(1): 81–97.
 
98.
Pazdur A, Dobrowolski R, Mohanti M, Piotrowska N and Srikanta D, 2002a. Radiocarbon time scale for deposition of the holocene calcareous tufaceous sediments from Poland and India (Orissa). Geochronometria 21: 85–96.
 
99.
Pazdur A, Dobrowolski R, Durakiewicz T, Piotrowska N, Mohanti M and Sirkanta D, 2002b. δ13C and δ18O time record and palaeoclimatic implications of the Holocene calcareous tufa from South-Eastern Poland and Eastern India (Orissa). Geochronometria 21: 97–108.
 
100.
Pearson GW and Stuiver M, 1986. High-precission bidecadal calibration of the radiocarbon time scale, 500–2500 BC. Radiocarbon 28(2B): 839–862.
 
101.
Peros MC, Munoz SE, Gajewski K and Viau AE, 2010. Prehistoric demography of north America inferred from radiocarbon data. Journal of Archaeological Science 37(3): 656–664, DOI 10.1016/j.jas.2009.10.029.
 
102.
Ralska-Jasiewiczowa M, 1989. Environmental changes recorded in lakes and mires of Poland during the last 13,000 years. Acta Palaeobotanica 29: 1–120.
 
103.
Ralska-Jasiewiczowa M and Latałowa M, 1996. Poland. In: Berglund BE, Birks HJB, Ralska-Jasiewiczowa M and Wright HE, Eds., Palaeoecological events during the last 15 000 years. Chichester, New York, Brisbane, Toronto, Singapore, J. Wiley & Sons: 403–472.
 
104.
Ralska-Jasiewiczowa M and Starkel L, 1988. Record of the hydrological changes during the Holocene in the lake, mire and fluvial deposits of Poland. Folia Quaternaria 57: 91–127.
 
105.
Ralska-Jasiewiczowa M, Goslar T, Madeyska T and Starkel L, Eds., 1998. Lake Gościąż, Central Poland, a monographic study. Part 1. Kraków, W. Szafer Institute of Botany, Polish Academy of Sciences: 340 pp.
 
106.
Ralska-Jasiewiczowa M, Goslar T, Różański K, Wacnik A, Czernik J and Chróst L, 2003. Very fast environmental changes at the Pleistocene/Holocene boundary, recorded in laminated sediments of Lake Gościąż, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology 193(2): 225–247, DOI 10.1016/S0031-0182(03)00227-X.
 
107.
Ralska-Jasiewiczowa M, Latałowa M, Wasylikowa K, Tobolski K, Madeyska T, Wright HE and Turner C, Eds., 2004. Late Glacial and Holocene history of vegetation in Poland based on isopollen maps. Kraków, W. Szafer Institute of Botany, Polish Academy of Sciences: 444 pp.
 
108.
Rasmussen SO, Andersen KK, Svensson AM, Steffensen J-P, Vinther B, Clausen HB, Siggaard-Andersen ML, Johnsen SJ, Larsen LB, Dahl-Jensen D, Bigler M, Röthlisberge, R, Fischer H, Goto-Azuma K, Hansson M and Ruth U, 2006. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research 111: D06102, DOI 10.1029/2005JD006079.
 
109.
Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr G, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kraiser KF, Kromer B, McCormac FG, Manning S, Reimer RW, Richards DA, Southon, JR, Talamo S, Turney CSM, van der Plicht J and Weyhenmeyer CE, 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51: 1111–1150.
 
110.
Rick JW, 1987. Dates as data: an examination of the Peruvian preceramic radiocarbon record. American Antiquity 52(1): 55–73.
 
111.
Różanski K, Klisch MA, Wachniew P, Gorczyca Z, Goslar T, Edwards TWDd, Shemesh A, 2010. Oxygenisotope geothermometers in lacustrine sediments: New insights through combined δ18O analyses of aquatic cellulose, authigenic calcite and biogenic silica in Lake Gościąż, central Poland. Geochimica et Cosmochimica Acta 74: 2957–2969.
 
112.
Schirimer V, 1983. Die talentwicklung an Main und Regnitz seit dem Hochwürm (The development at Main and Regnitz since Upper Würm). Geologisches Jahrbuch A 71: 11–43 (in German).
 
113.
Sernander R, 1908. On the evidence of postglacial changes of climate furnished by the peat-mosses of northern Europe. Geologiska Föreningens I Stockholms Förhandlingar 30: 456–478.
 
114.
Starkel L, 1960. Evolution of the relief of Polisch flysch Carpathians during the Holocene. Prace Geograficzne IG PAN, Warszawa (in Polish).
 
115.
Starkel L, 1966. The palaeogeography of Mid-and Eastern Europe during the last cold stage and West European comparison. Philosophical Transactions of the Royal Society London B 280: 351–371.
 
116.
Starkel L, 1977. Paleogeografia holocenu (Holocene palaeogeography). Warszawa, PWN: 362 pp (in Polish).
 
117.
Starkel L, 1983. The reflection of hydrologic changes in the fluvial environment of the temperate zone during the last 15000 years. In: Gregory KJ, Ed., Background to Palaeohydrology. Chichester, J. Wiley and Sons: 213–237.
 
118.
Starkel L, 1987. Anthropogenic sedimentological changes in Central Europe. Uppsala. Striae 26: 21–29.
 
119.
Starkel L, 1991. Environmental changes at the Younger Dryas-Preboreal transition and during the early Holocene. The Holocene 1(3): 234–242, DOI 10.1177/095968369100100305.
 
120.
Starkel L, 1995. Reconstruction of hydrological changes between 7000 and 3000 BP in the upper and middle Vistula river basin, Poland. The Holocene 5(1): 34–42, DOI 10.1177/095968369500500105.
 
121.
Starkel L, 1997. Mass movement during the Holocene: Carpathian example and the European perspective. In: Frenzel B, Ed., Rapid mass movement as a source of climatic evidence for the Holocene. Palaeoclimate Research 19: 385–400.
 
122.
Starkel L, 1999. 8500–8000 yrs BP Humid Phase — Global or Regional? Science Reports of Tohoku University, 7th Series, Geography 49(2) 105–133.
 
123.
Starkel L, 2002. Changes in the frequency of extreme events as the indicator of climatic change in the Holocene (in fluvial systems). Quaternary International 91(1): 25–32, DOI 10.1016/S1040-6182(01)00099-4.
 
124.
Starkel L, 2003. Short-term hydrological changes. In: Gregory KJ and Benito G, Eds., Paleohydrology, Understanding Global Change. Chichester, J. Wiley & Sons: 337–356.
 
125.
Starkel L, 2005. Role of climatic and anthropogenic factors accelerating soil erosion and fluvial activity in central Europe. Studia Quaternaria 22: 27–33.
 
126.
Starkel L, 2006a. Problems of Holocene climatostratigraphy on the territory of Poland. Studia Quaternaria 23: 17–21.
 
127.
Starkel L, 2006b. Clusterings of extreme rainfalls and evolution of fluvial systems in the Holocene. Studia Quaternaria 23: 23–28.
 
128.
Starkel L, (Ed.), 1990. Evolution of Vistula river valley during last 15000 years. Part III, Warszawa, Geographical Studies, Special Issue 5.
 
129.
Starkel L, (Ed.), 1991. Geografia Polski. Środowisko przyrodnicze (Polish geography. The natural environment). Warszawa, PWN: 669 pp (in Polish).
 
130.
Starkel L, Gregory KJ and Thornes JB, (Eds.), 1991. Temperate Paleohydrology: Fluvial Processes in the Temperate Zone During the Last 15,000 Years. John Wiley & Son Ltd: 568pp.
 
131.
Starkel L, Kalicki T, Krąpiec M, Soja R, Gębica P and Czyżowska E, 1996a. Hydrological changes of valley floors in the Upper Vistula basin during late Vistulian and Holocene. Geographical Studies, Special Issue 9: 7–128.
 
132.
Starkel L, Pazdur A, Pazdur MF, Wicik B and Więckowski K, 1996b. Lake-level and groundwater-level changes in the Lake Gościąż area, Poland: palaeoclimatic implications. The Holocene 6(2): 213–224, DOI 10.1177/095968369600600207.
 
133.
Jasiewiczowa M, Demske D, Różański K, Łącka B, Pelisiak A, Szeroczyńska K, Wicik B, Więckowski K, 1998. Discussion of the Holocene events recorded in the Lake Gościąż sediments. In: Ralska-Jasiewiczowa M, Goslar T, Madeyska T and Starkel L, Eds., 1998. Lake Gościąż, Central Poland, a monographic study. Part 1. Kraków, W. Szafer Institute of Botany, Polish Academy of Sciences: 239–251.
 
134.
Starkel L, Soja R and Michczyńska DJ, 2006. Past hydrological events reflected in Holocene history of Polish rivers. Catena 66(1–2): 24–33, DOI 10.1016/j.catena.2005.07.008.
 
135.
Stuiver M and Pearson GW, 1986. High-precission bidecadal calibration of the radiocarbon time scale, AD 1950-500 BC and 2500–6000 BC. Radiocarbon 28(2B): 805–838.
 
136.
Stuiver M and Reimer PJ, 1986. A computer program for radiocarbon age calibration. Radiocarbon 28(2B): 1022–1030.
 
137.
Szeroczyńska K, 1998. Holoceńska historia jezior Lednickiego Parku Krajobrazowego na podstawie kopalnych wioślarek (The Holocene history of lakes of Lednica Landscape Park based on subfossil Cladocera). Studia Geologica Polonica 112: 29–103 (in Polish).
 
138.
Szeroczyńska K and Zawisza E, 2011. Records of the 8200 cal BP cold event reflected in the composition of subfossil Cladocera in the sediments of three lakes in Poland. Quaternary International 233(2): 185–193, DOI 10.1016/j.quaint.2010.07.007.
 
139.
De Vries HI, 1958. Variation in concentration of radiocarbon with time and location on earth. Koninkllijke Nederlandse Akademie van Wetenschappen Proceedings Serie B 61: 94–102.
 
140.
Walanus A and Nalepka D, 2004. Calendar ages of the time horizons presented on the isopollen maps. In: Ralska-Jasiewiczowa M, Latałowa M, Wasylikowa K, Tobolski K, Madeyska T, Wright HE and Turner C, Eds., Late Glacial and Holocene history of vegetation in Poland based on isopollen maps. Kraków, W. Szafer Institute of Botany, Polish Academy of Sciences: 25–28.
 
141.
Walanus A and Nalepka D, 2010. Calibration of Mangerud’s Boundaries. Radiocarbon (52)4: 1639–1644.
 
142.
Wiliams AN, 2012. The use of summed radiocarbon probability distributions in archaeology: a review of methods. Journal of Archaeological Science 39(3): 578–589.
 
143.
Wojciechowski A, 1999. Late Glacial and Holocene lake-level fluctuations in the Kórnik-Zaniemyśl Lakes area, Great Poland Lowland. Quaternary Studies in Poland 16: 81–101.
 
144.
Wójcik A, Mrozek T and Granoszewski W, 2006. Lithological conditioning of landslides and climatic changes with examples from the Beskidy Mts., Western Carpathians, Poland. Geografia Fisica e Dinamica Quaternaria 29: 197–200.
 
145.
Zawisza E and Szeroczyńska K, 2007. The development history of Wigry Lake as shown by subfossil Cladocera. Geochronometria 27: 67–74, DOI 10.2478/v10003-007-0021-2.
 
146.
Zoller H, 1977. Alter und Ausmass postglazialer Klimaschwankungen in den Schweizer Alpen (Age and extent of post-glacial climatic fluctuations in the Swiss Alps). In: Frenzel B, Ed., Dendrochronologie und postglaziale Klimaschwankungen in Europa (in German): 271–281.
 
eISSN:1897-1695
ISSN:1733-8387
Journals System - logo
Scroll to top