Anomalous fading and crystalline structure: Studies on individual chondrules from the same parent body
More details
Hide details
Geosciences Division, Physical Research Laboratory, Ahmedabad, 380009, India
Online publication date: 2013-09-27
Publication date: 2013-12-01
Geochronometria 2013;40(4):250-257
Plagioclase feldspar is the major luminescent mineral in meteorites. Thermoluminescence (TL) characteristics, peak temperature (Tm), full width at half maximum (FWHM), ratio of high (HT) to low temperature (LT) peak, and TL sensitivity (TL/dose/mass) to an extent reflect degree of crystallinity of the mineral. The present study explores and establishes a correlation between quantum mechanical anomalous (athermal) fading and structural state by examining TL of individual chondrules. Chondrules were separated using freeze-thaw technique from a single fragment of Dhajala meteorite. The results show large variation in Tm (155−230°C), FWHM (80−210°C) and HT/LT (0.07–0.47) and seem to be positively correlated. TL sensitivity (ranging from 14 to 554 counts/s/Gy/mg) decreases with increasing Tm and FWHM. Large variations in TL parameters (Tm, FWHM, HT/LT, and Sensitivty) suggest that individual chondrules had different degree of crystallization. Thermal annealing experiments suggest that comparatively ordered form of feldspar can be converted to a disordered form by annealing the sample at high temperatures (1000°C) for long time (10 hr) in vacuum (1 mbar pressure) condition and rapidly cooling it. Measured anomalous fading suggest that fading rate increases as the crystal form changes from an ordered state to a disordered state. However, the fading rate becomes nearly negligible for the most disordered feldspars.
Afouxenidis D, Polymeris GS, Tsirliganis NC and Kitis G, 2012. Computerised curve deconvolution of TL/OSL curves using a popular spreadsheet program. Radiation Protection Dosimetry 149(4): 363–370, DOI 10.1093/rpd/ncr315.
Berger GW, 1985. Thermoluminescence dating of volcanic ash. Journal of Volcanology and Geothermal Research 25(3–4): 333–347, DOI 10.1016/0377-0273 (85)90020-4.
Biswas RH, Morthekai P, Gartia RK, Chawla S and Singhvi AK, 2011. Thermoluminescence of the meteorite interior: A possible tool for the estimation of cosmic ray exposure ages. Earth and Planetary Science Letters 304(1–2): 36–44, DOI 10.1016/j.epsl.2011.01.012.
Bøtter-Jensen L, Thomsen KJ and Jain M, 2010. Review of optically stimulated luminescence (OSL) instrumental developments for retrospective dosimetry. Radiation Measurements 45(3–6): 253–257, DOI 10.1016/j.radmeas.2009.11.030.
Dodd RT, 1981. Meteorites — A Petrologic-Chemical Synthesis, Cambridge, New York.
Garlick GFJ and Robinson JE, 1972. The thermoluminescence of lunar sample. In the Moon (Edited by Runcorn SK and Urrey H). International astronomical unit: 324–329.
Hasan FA, Keck BD, Hartmetz C and Sears DWG, 1986. Anomalous fading of thermoluminescence in meteorites. Journal of Luminescence 34(6): 327–335, DOI 10.1016/0022-2313(86)90076-1.
Huntley DJ and Lamothe M, 2001. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Canadian Journal of Earth Sciences 38(7): 1093–1106, DOI 10.1139/e01-013.
Huntley DJ and Lian OB, 2006. Some observations on tunnelling of trapped electrons in feldspars and their implications for optical dating. Quaternary Science Reviews 25(19–20): 2503–2512, DOI 10.1016/j.quascirev.2005.05.011.
Huss GR, Rubin AE and Grossman JN, 2006. Thermal Metamorphism in Chondrites. Meteorites and the Early Solar System II (Edited by Lauretta DS and McSween H Y Jr.). University of Arizona Press, Tucson: 567–586.
Jaek I, Molodkov A and Vasilchenko V, 2007. Possible reasons for anomalous fading in alkali feldspars used for luminescence dating of quaternary deposits. Estonian Journal of Earth Sciences 56(3): 167–178.
Keck BD, Kyle Guimon R and Sears DWG, 1986. Chemical and physical studies of type 3 chondrites, VII. Annealing studies of the Dhajala H3.8 chondrite and the thermal history of chondrules and chondrites. Earth and Planetary Science Letters 77(3–4): 419–427, DOI 10.1016/0012-821x (86)90151-2.
Melcher CL, 1981. Thermoluminescence of meteorites and their orbits. Earth and Planetary Science Letters 52(1): 39–54, DOI 10.1016/0012-821X(81)90206-5.
Poolton NRJ, Ozanyan KB, Wallinga J, Murray AS and Bøtter-Jensen L, 2002a. Electrons in feldspar II: A consideration of the influence of conduction band-tail states on luminescence processes. Physics and Chemistry of Minerals 29(3): 217–225, DOI 10.1007/s00269-001-0218-2.
Poolton NRJ, Wallinga J, Murray AS, Bulur E and Bøtter-Jensen L, 2002b. Electrons in feldspar I: On the wavefunction of electrons trapped at simple lattice defects. Physics and Chemistry of Minerals 29(3): 210–216, DOI 10.1007/s00269-001-0217-3.
Randall JT and Wilkinson MHF, 1945. Phosphorescence and electron traps. Proceedingsof the Royal Society A 184(999): 365–389, DOI 10.1098/rspa.1945.0024.
Sears DW and Durrani SA, 1980. Thermoluminescence and the terrestrial age of meteorites: Some recent results. Earth and Planetary Science Letters 46(2): 159–166, DOI 10.1016/0012-821X(80)90002-3.
Sears DW, Grossman JN, Melcher CL, Ross LM and Mills AA, 1980. Measuring metamorphic history of unequilibrated ordinary chondrites. Nature 287(5785): 791–795, DOI 10.1038/287791a0.
Sears DWG, 1988. Thermoluminescence of meteorites: Shedding light on the cosmos. International Journal of Radiation Applications and Instrumentation. Part D 14(1–2): 5–17, DOI 10.1016/1359-0189(88)90036-2.
Sears DWG, Sparks MH and Rubin AE, 1984. Chemical and physical studies of type 3 chondrites-III. Chondrules from the Dhajala H3.8 chondrite. Geochimica et Cosmochimica Acta 48(6): 1189–1200, DOI 10.1016/0016-7037(84)90055-3.
Sears DWG and Weeks KS, 1983. Chemical and physical studies of type 3 chondrites — II: Thermoluminescence of sixteen type 3 ordinary chondrites and relationships with oxygen isotopes. Journal of Geophysical Research 88: 301–311, DOI 10.1029/JB088iS01p0B301.
Tyler S and McKeever SWS, 1988. Anomalous fading of thermoluminescence in oligoclase. International Journal of Radiation Applications and Instrumentation. Part D 14(1–2): 149–154, DOI 10.1016/1359-0189(88)90056-8.
Visocekas R, 1985. Tunnelling radiative recombination in labradorite: Its association with anomalous fading of thermoluminescence. Nuclear Tracks and Radiation Measurements (1982) 10(4–6): 521–529, DOI 10.1016/0735-245X(85)90053-5.
Visocekas R, 2002. Tunnelling in afterglow, its coexistence and interweaving with thermally stimulated luminescence. Radiation Protection Dosimetry 100(1–4): 45–54.
Wintle AG, 1973. Anomalous fading of thermo-luminescence in mineral samples. Nature 245(5421): 143–144, DOI 10.1038/245143a0.
Yu Y and Hewins RH, 1998. Transient heating and chondrule formation: Evidence from sodium loss in flash heating simulation experiments. Geochimica et Cosmochimica Acta 62(1): 159–172, DOI 10.1016/s0016-7037 (97)00321-9.
Zanda B, 2004. Chondrules. Earth and Planetary Science Letters 224(1–2): 1–17, DOI 10.1016/j.epsl.2004.05.005.
Journals System - logo
Scroll to top